Skip to main content

Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation

  • Living reference work entry
  • First Online:
Handbook of Electroporation
  • 227 Accesses

Abstract

Atomistic simulations such as molecular dynamics (MD) simulations have revealed much about the fundamental biophysics of electroporation in homogeneous phospholipid bilayers; however, the structures and behaviors of live cellular membranes differ considerably from idealized zwitterionic lipid bilayers. Biological membranes contain both neutral and charged lipid types and interact with a large number of bulk and interfacial electrolytes that form complexes with individual lipids, thereby modulating their local surface tensions and creating domains and rafts regions. Even without considering the effects of transmembrane proteins, some of which are voltage-gated and are likely to perturb electropore formation and annihilation, the differences between electroporation in heterogeneous membranes, especially those containing salts, and homogeneous membranes described in the last section, are significant. This section will focus on how local perturbations to membranes such as the inclusion of anionic lipids, divalent cations such as calcium, oxidized lipids, and other additions can significantly change the behaviors of membrane electropermeabilization. Similarly, additional metrics such as calcium binding isotherms will be presented to assess the validity of these simulations and how well they relate to experiments. Finally, some additional studies will be discussed to deduce whether heterogeneous systems (more representative of live cellular membranes) form electropores with an exponential inverse dependence on applied voltage and electric field, as is observed for homogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bockmann RA, Grubmuller H (2004) Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew Chem Inter Ed 43(8):1021–1024. doi:10.1002/anie.200352784

    Article  Google Scholar 

  • Fernandez ML, Risk M, Reigada R, Vernier PT (2012) Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem Biophys Res Commun 423(2):325–330. doi:10.1016/j.bbrc.2012.05.122

    Article  Google Scholar 

  • Gurtovenko AA, Lyulina AS (2014) Electroporation of asymmetric phospholipid membranes. J Phys Chem B 118(33):9909–9918

    Article  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127(50):17570–17571. doi:10.1021/ja053129n

    Article  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2007) Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J Am Chem Soc 129(17):5358–5359

    Article  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112(7):1953–1962

    Article  Google Scholar 

  • Ho MC, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117(39):11633–11640. doi:10.1021/jp401722g

    Article  Google Scholar 

  • Lee S-J, Song Y, Baker NA (2008) Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects. Biophys J 94(9):3565–3576

    Article  Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236(1):27–36. doi:10.1007/s00232-010-9277-y

    Article  Google Scholar 

  • Levine ZA, Vernier PT (2012) Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol 245(10):599–610. doi:10.1007/s00232-012-9471-1

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59(3):3471–3482

    Article  Google Scholar 

  • Neumann E, Schaeferridder M, Wang Y, Hofschneider PH (1982) Gene-transfer into mouse lyoma cells by electroporation in high electric-fields. EMBO J 1(7):841–845

    Google Scholar 

  • Sachs JN, Nanda H, Petrache HI, Woolf TB (2004a) Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J 86(6):3772–3782

    Article  Google Scholar 

  • Sachs JN, Crozier PS, Woolf TB (2004b) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121(22):10847–10851. doi:10.1063/1.1826056

    Article  Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22(6):440–448

    Article  Google Scholar 

  • Sinn CG, Antonietti M, Dimova R (2006) Binding of calcium to phosphatidylcholine-phosphatidylserine membranes. Colloids Surf APhysicochem Eng Asp 282:410–419. doi:10.1016/j.colsurfa.2005.10.014

    Article  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88(6):4045–4053. doi:10.1529/biophysj.104.050617

    Article  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. Biophys J 86 (1):371a-372a

    Google Scholar 

  • Vácha R, Siu SW, Petrov M, Böckmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P (2009) Effects of alkali cations and halide anions on the DOPC lipid membrane. J Phys Chem A 113(26):7235–7243

    Article  Google Scholar 

  • Vernier PT, Li AM, Marcu L, Craft CM, Gundersen MA (2003) Ultrashort pulsed electric fields induce membrane phospholipid translocation and caspase activation: differential sensitivities of Jurkat T lymphoblasts and rat glioma C6 cells. IEEE Transactions on Dielectrics and Electrical Insulation 10(5):795–809

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts. FEBS letters 572(1):103–108

    Article  Google Scholar 

  • Vernier PT, Levine ZA, YH W, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009a) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 4(11). doi:10.1371/Journal.Pone.0007966

    Google Scholar 

  • Vernier PT, Ziegler MJ, Dimova R (2009b) Calcium binding and head group dipole angle in phosphatidylserine-phosphatidylcholine bilayers. Langmuir 25(2):1020–1027. doi:10.1021/La8025057

    Article  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112(43):13588–13596. doi:10.1021/Jp8027726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary A. Levine .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Levine, Z.A. (2016). Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics