Skip to main content

Instrumentation for Intraoperative Detection

  • 144 Accesses

Abstract

Focusing on nuclear and optical modalities, the current chapter reviews the rapidly advancing technologies in intraoperative detection and imaging. This chapter reviews not only currently routine intraoperative imaging technologies but also investigational technologies potentially adaptable to the intraoperative setting.

This is a preview of subscription content, log in via an institution.

Abbreviations

[18F]FDG:

2-deoxy-2-[18F]fluoro-d-glucose

ALA:

5-aminolevulinic acid

CARS:

Coherence anti-Stokes Raman scattering

CCD:

Charge-coupled detector

CdTe:

Cadmium telluride

CdZnTe (or CZT):

Cadmium zinc telluride

CMOS:

Complementary metal oxide semiconductor

CsI(Na):

Sodium-doped cesium iodide

CsI(Tl):

Thallium-doped cesium iodide

CT:

X-ray computed tomography

DOT:

Diffuse optical tomography

EPR:

Enhanced permeability and retention

FITC:

Fluorescein isothiocyanate

FLI:

Intraoperative fluorescence imaging

FLuc:

Gene encoding for firefly luciferase

FOV:

Field of view

FWHM:

Full-width half-maximum

GFP:

Green fluorescent protein

GSO:

Cerium-doped gadolinium orthooxysilicate

HgI2 :

Mercuric iodide

ICG:

Indocyanine green

LED:

Light-emitting diode

LEHR:

Low-energy high-resolution

LSO:

Cerium-doped lutetium orthooxysilicate

MBq:

Mega-Becquerel (106 Becquerel)

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MSOT:

Multispectral optoacoustic tomography

NaI(Tl):

Thallium-doped sodium iodide

NBI:

Narrowband imaging

NIR::

Near-infrared

OCT:

Optical coherence tomography

PA:

Photoacoustic

PET:

Positron emission tomography

PMT:

Photomultiplier tube

POCI:

Peroperative compact imager

PpIX:

Protoporphyrin IX

RF:

Radiofrequency

RGD:

Tripeptide composed of L-arginine, glycine, and L-aspartic acid

SERS:

Surface enhanced Raman scattering (or surface enhanced Raman spectroscopy)

SLN:

Sentinel lymph node

SPECT:

Single-photon emission tomography

SSGC:

Small semiconductor gamma camera

US:

Ultrasonography

References

  1. Fong Y, Giulianotti P, Lewis J, et al. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015.

    Book  Google Scholar 

  2. Sweet WH. The use of nuclear disintegration in diagnosis and treatment of brain tumors. N Engl J Med. 1951;245:875–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cody III HS, editor. Sentinel lymph node biopsy. London: Martin Dunitz; 2002.

    Google Scholar 

  4. Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008.

    Google Scholar 

  5. Povoski SP, Neff RL, Mojzisik CM, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gulec SA, Moffat FL, Carroll RG. The expanding clinical role for intraoperative gamma probes. In: Freeman LM, editor. Nuclear medicine annual 1997. Philadelphia: Lippincott-Raven Publishers; 1997. p. 209–37.

    Google Scholar 

  7. Woolfenden JM, Barber HB. Intraoperative probes. In: Wagner HN, Szabo Z, Buchanan JW, editors. Principles of nuclear medicine. 2nd ed. Philadelphia: WB Saunders; 1995. p. 292–7.

    Google Scholar 

  8. Barber HB, Barrett HH, Woolfenden JM, et al. Comparison of in vivo scintillation probes and gamma cameras for detection of small, deep tumours. Phys Med Biol. 1989;34:727–39.

    Article  CAS  PubMed  Google Scholar 

  9. Daghighian F, Mazziotta JC, Hoffman EJ, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21:153–7.

    Article  CAS  PubMed  Google Scholar 

  10. Raylman RR, Fisher SJ, Brown RS, et al. Fluorine-18-fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J Nucl Med. 1995;36:1869–74.

    CAS  PubMed  Google Scholar 

  11. Raylman RR, Wahl RL. A fiber-optically coupled positron-sensitive surgical probe. J Nucl Med. 1994;35:909–13.

    CAS  PubMed  Google Scholar 

  12. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.

    Article  PubMed  Google Scholar 

  13. Zanzonico P. The intraoperative gamma probe: design, safety, and operation. In: Cody III HS, editor. Sentinel lymph node biopsy. London: Martin Dunitz; 2008. p. 45–68.

    Google Scholar 

  14. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30:33–48.

    Article  CAS  PubMed  Google Scholar 

  15. Essner R, Daghighian F, Giuliano AE. Advances in FDG PET probes in surgical oncology. Cancer J. 2002;8:100–8.

    Article  PubMed  Google Scholar 

  16. Essner R, Hsueh EC, Haigh PI, et al. Application of an [18F]fluorodeoxyglucose-sensitive probe for the intraoperative detection of malignancy. J Surg Res. 2001;96:120–6.

    Article  CAS  PubMed  Google Scholar 

  17. Strong VE, Galanis CJ, Riedl CC, et al. Portable PET probes are a novel tool for intraoperative localization of tumor deposits. Ann Surg Innov Res. 2009;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Strong VE, Humm J, Russo P, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008;22:386–91.

    Article  PubMed  Google Scholar 

  19. Meller B, Sommer K, Gerl J, et al. High energy probe for detecting lymph node metastases with 18F-FDG in patients with head and neck cancer. Nuklearmedizin. 2006;45:153–9.

    CAS  PubMed  Google Scholar 

  20. Wasselle J, Becker J, Cruse W, et al. Localization of malignant melanoma using monoclonal antibodies. Arch Surg. 1991;126:481–4.

    Article  CAS  PubMed  Google Scholar 

  21. Schneebaum S, Essner R, Even-Sapir E. Positron-sensitive probes. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008. p. 23–8.

    Chapter  Google Scholar 

  22. Raylman RR. Performance of a dual, solid-state intraoperative probe system with 18F, 99mTc, and 111In. J Nucl Med. 2001;42:352–60.

    CAS  PubMed  Google Scholar 

  23. Reinhardt H, Stula D, Gratzl O. Topographic studies with 32P tumor marker during operations of brain tumors. Eur Surg Res. 1985;17:333–40.

    Article  CAS  PubMed  Google Scholar 

  24. Newman LA. Current issues in the surgical management of breast cancer: a review of abstracts from the 2002 San Antonio Breast Cancer Symposium, the 2003 Society of Surgical Oncology annual meeting, and the 2003 American Society of Clinical Oncology meeting. Breast J. 2004;10 Suppl 1:S22–5.

    Article  PubMed  Google Scholar 

  25. Goyal A, Newcombe RG, Mansel RE, et al. Role of routine preoperative lymphoscintigraphy in sentinel node biopsy for breast cancer. Eur J Cancer. 2005;41:238–43.

    Article  PubMed  Google Scholar 

  26. Tafra L, McMasters KM, Whitworth P, et al. Credentialing issues with sentinel lymph node staging for breast cancer. Am J Surg. 2000;180:268–73.

    Article  CAS  PubMed  Google Scholar 

  27. Mathelin C, Salvador S, Bekaert V, et al. A new intraoperative gamma camera for the sentinel lymph node procedure in breast cancer. Anticancer Res. 2008;28:2859–64.

    PubMed  Google Scholar 

  28. Mathelin C, Salvador S, Croce S, et al. Optimization of sentinel lymph node biopsy in breast cancer using an operative gamma camera. World J Surg Oncol. 2007;5:132.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mathelin C, Salvador S, Huss D, et al. Precise localization of sentinel lymph nodes and estimation of their depth using a prototype intraoperative mini gamma-camera in patients with breast cancer. J Nucl Med. 2007;48:623–9.

    Article  PubMed  Google Scholar 

  30. Britten AJ. A method to evaluate intra-operative gamma probes for sentinel lymph node localisation. Eur J Nucl Med. 1999;26:76–83.

    Article  CAS  PubMed  Google Scholar 

  31. Aarsvold JN, Alazraki NP. Update on detection of sentinel lymph nodes in patients with breast cancer. Semin Nucl Med. 2005;35:116–28.

    Article  PubMed  Google Scholar 

  32. Hoffman EJ, Torni MP, Levin CS. Gamma and beta intra-operative imaging probes. Nucl Instrum Methods Phys Res. 1997;392:324–9.

    Article  CAS  Google Scholar 

  33. Scopinaro F, Soluri A. Gamma ray imaging probes for radioguided surgery and site-directed biopsy. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008. p. 29–36.

    Chapter  Google Scholar 

  34. Abe A, Takahashi N, Lee J, et al. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera. Eur J Nucl Med Mol Imaging. 2003;30:805–11.

    Article  CAS  PubMed  Google Scholar 

  35. Pitre S, Menard L, Ricard M, et al. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience. Eur J Nucl Med Mol Imaging. 2003;30:339–43.

    Article  PubMed  Google Scholar 

  36. Oda T, Hayama K, Tsuchimochi M. Evaluation of small semiconductor gamma camera – simulation of sentinel lymph node biopsy by using a trial product of clinical type gamma camera. Kaku Igaku. 2009;46:1–12.

    PubMed  Google Scholar 

  37. Tsuchimochi M, Hayama K, Oda T, et al. Evaluation of the efficacy of a small CdTe gamma-camera for sentinel lymph node biopsy. J Nucl Med. 2008;49:956–62.

    Article  PubMed  Google Scholar 

  38. Tsuchimochi M, Sakahara H, Hayama K, et al. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications. Eur J Nucl Med Mol Imaging. 2003;30:1605–14.

    Article  PubMed  Google Scholar 

  39. Sanchez F, Benlloch JM, Escat B, et al. Design and tests of a portable mini gamma camera. Med Phys. 2004;31:1384–97.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez F, Fernandez MM, Gimenez M, et al. Performance tests of two portable mini gamma cameras for medical applications. Med Phys. 2006;33:4210–20.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeeren L, Meinhardt W, Bex A, et al. Paraaortic sentinel lymph nodes: toward optimal detection and intraoperative localization using SPECT/CT and intraoperative real-time imaging. J Nucl Med. 2010;51:376–82.

    Article  PubMed  Google Scholar 

  42. Vermeeren L, Valdes Olmos RA, Klop WM, et al. A portable gamma-camera for intraoperative detection of sentinel nodes in the head and neck region. J Nucl Med. 2010;51:700–3.

    Article  PubMed  Google Scholar 

  43. Vermeeren L, Valdes Olmos RA, Meinhardt W, et al. Intraoperative imaging for sentinel node identification in prostate carcinoma: its use in combination with other techniques. J Nucl Med. 2011;52:741–4.

    Article  PubMed  Google Scholar 

  44. Ortega J, Ferrer-Rebolleda J, Cassinello N, et al. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy. Eur J Nucl Med Mol Imaging. 2007;34:165–9.

    Article  PubMed  Google Scholar 

  45. Naji S, Tadros A, Traub J, et al. Case report: improving the speed and accuracy of melanoma sentinel node biopsy with 3D intra-operative imaging. J Plast Reconstr Aesthet Surg. 2011;64:1712–5.

    Article  PubMed  Google Scholar 

  46. Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37:1452–61.

    Article  PubMed  Google Scholar 

  47. Daghigian F, Fong Y. Detectors for intraoperative molecular imaging: from probes to scanners. In: Fong Y et al., editors. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015. p. 55–67.

    Chapter  Google Scholar 

  48. Contag PR, Olomu IN, Stevenson DK, et al. Bioluminescent indicators in living mammals. Nat Med. 1998;4:245–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005;23:313–20.

    Article  CAS  PubMed  Google Scholar 

  50. Taruttis A, Ntziachristos V. Translational optical imaging. AJR Am J Roentgenol. 2012;199:263–71.

    Article  PubMed  Google Scholar 

  51. Witjes JA, Douglass J. The role of hexaminolevulinate fluorescence cystoscopy in bladder cancer. Nat Clin Pract Urol. 2007;4:542–9.

    Article  CAS  PubMed  Google Scholar 

  52. Herr H. Narrow band cystoscopy. In: Fong Y et al., editors. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015. p. 257–69.

    Chapter  Google Scholar 

  53. Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.

    Article  CAS  PubMed  Google Scholar 

  54. Ashitate Y, Stockdale A, Choi HS, et al. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J Surg Res. 2012;176:7–13.

    Article  PubMed  Google Scholar 

  55. Ashitate Y, Tanaka E, Stockdale A, et al. Near-infrared fluorescence imaging of thoracic duct anatomy and function in open surgery and video-assisted thoracic surgery. J Thorac Cardiovasc Surg. 2011;142:31–8.e1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.

    Article  CAS  PubMed  Google Scholar 

  57. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hutteman M, Choi HS, Mieog JS, et al. Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann Surg Oncol. 2011;18:1006–14.

    Article  PubMed  Google Scholar 

  59. Lee BT, Hutteman M, Gioux S, et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction. Plast Reconstr Surg. 2010;126:1472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Troyan SL, Kianzad V, Gibbs-Strauss SL, et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kosaka N, Mitsunaga M, Longmire MR, et al. Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer. 2011;129:1671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bradbury M, Pauliah M, Wiesner U. Ultrasmall fluorescent silica nanoparticles as intraoperative imaging tools for cancer diagnosis and treatment. In: Fong Y et al., editors. Imaging and visualization in the modern operating room: a comprehensive guide for physicians. New York: Springer; 2015. p. 167–79.

    Chapter  Google Scholar 

  63. Bradbury MS, Pauliah M, Zanzonico P, et al. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015.

    Google Scholar 

  64. Beattie BJ, Thorek DL, Schmidtlein CR, et al. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides. PLoS ONE. 2012;7, e31402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cerenkov PA. Visible emission of clean liquids by action of gamma-radiation. C R Dokl Akad Nauk SSSR. 1934;2:451–4.

    Google Scholar 

  66. Dothager RS, Goiffon RJ, Jackson E, et al. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS ONE. 2010;5, e13300.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Holland JP, Normand G, Ruggiero A, et al. Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions. Mol Imaging. 2011;10:177–86.

    PubMed  PubMed Central  Google Scholar 

  68. Li C, Mitchell GS, Cherry SR. Cerenkov luminescence tomography for small-animal imaging. Opt Lett. 2010;35:1109–11.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes. PLoS ONE. 2010;5, e9470.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lucignani G. Cerenkov radioactive optical imaging: a promising new strategy. Eur J Nucl Med Mol Imaging. 2011;38:592–5.

    Article  PubMed  Google Scholar 

  71. Robertson R, Germanos MS, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruggiero A, Holland JP, Lewis JS, et al. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51:1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thorek DL, Abou DS, Beattie BJ, et al. Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG. J Nucl Med. 2012;53:1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55:95–8.

    Article  CAS  PubMed  Google Scholar 

  75. Spinelli AE, Ferdeghini M, Cavedon C, et al. First human cerenkography. J Biomed Opt. 2013;18:20502.

    Article  PubMed  Google Scholar 

  76. Xu MH, Wang LHV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77:41–101.

    Google Scholar 

  77. Herzog E, Taruttis A, Beziere N, et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012;263:461–8.

    Article  PubMed  Google Scholar 

  78. Ku G, Fornage BD, Jin X, et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat. 2005;4:559–66.

    Article  PubMed  Google Scholar 

  79. Kruger RA, Kiser WL, Reinecke DR, et al. Thermoacoustic computed tomography using a conventional linear transducer array. Med Phys. 2003;30:856–60.

    Article  PubMed  Google Scholar 

  80. Zeng Y, Da X, Wang Y, et al. Photoacoustic and ultrasonic coimage with a linear transducer array. Opt Lett. 2004;29:1760–2.

    Article  PubMed  Google Scholar 

  81. McNally LR, Mezera M, Morgan DE, et al. Current and emerging clinical applications of multispectral optoacoustic tomography (MSOT) in oncology. Clin Cancer Res. 2016;22:3432–9.

    Article  CAS  PubMed  Google Scholar 

  82. Neuschmelting V, Burton NC, Lockau H, et al. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs 3D handheld probes for potential clinical translation. Photoacoustics. 2016;4:1–10.

    Article  PubMed  Google Scholar 

  83. Hielscher AH. Optical tomographic imaging of small animals. Curr Opin Biotechnol. 2005;16:79–88.

    Article  CAS  PubMed  Google Scholar 

  84. Jian H. Diffuse optical tomography: principles and applications. Boca Raton: CRC Press; 2010.

    Book  Google Scholar 

  85. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zavaleta CL, Kircher MF, Gambhir SS. Raman’s “effect” on molecular imaging. J Nucl Med. 2011;52:1839–44.

    Article  CAS  PubMed  Google Scholar 

  87. Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kopelman D, Blevis I, Iosilevsky G, et al. Sentinel node detection in an animal study: evaluation of a new portable gamma camera. Int Surg. 2007;92:161–6.

    PubMed  Google Scholar 

  89. Kopelman D, Blevis I, Iosilevsky G, et al. A newly developed intra-operative gamma camera: performance characteristics in a laboratory phantom study. Eur J Nucl Med Mol Imaging. 2005;32:1217–24.

    Article  PubMed  Google Scholar 

  90. Zanzonico P. Noninvasive imaging for supporting basic research. In: Kiessling F, Pichler BJ, editors. Small-animal imaging: basics and practical guide. Heidelberg: Springer; 2011. p. 3–16.

    Chapter  Google Scholar 

  91. van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17:1315–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Zanzonico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Zanzonico, P. (2016). Instrumentation for Intraoperative Detection. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Instrumentation for Intraoperative Detection and Imaging
    Published:
    20 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_38-3

  2. Instrumentation for Intraoperative Detection and Imaging
    Published:
    02 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_38-2

  3. Original

    Instrumentation for Intraoperative Detection
    Published:
    29 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_38-1