Skip to main content

Radiopharmaceuticals for Therapy

Nuclear Oncology

Abstract

Common radionuclides used for radiometabolic therapy include 131I, 153Sm, 89Sr, 223Ra, and 90Y. In this chapter we will focus on therapeutic radiopharmaceuticals are employed for therapy of differentiated follicular thyroid carcinomas,for therapy of pheochromocytoma/paraganglioma/neuroblastomas, for bone pain palliation, for radioimmunotherapy of lymphomas, for peptide radioreceptor therapy of neuroendocrine tumors, and for intra-arterial radioembolization of hypervascularized tumors of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

153Sm-EDTMP:

153Sm-ethylenediamine tetramethylene phosphoric acid

188Re-HEDP:

188Re-hydro-ethylidene diphosphate

CCK:

Cholecystokinin

DIT:

Diiodotyrosine

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

DOTA-TATE:

DOTA-D-Phe1-Tyr3-octreotate

DOTA-TATE:

DOTA-Tyr3-Thre8-octreotide

DOTA-TOC:

DOTA-D-Phe1-Tyr3-octreotide

GLP-1:

Glucagon-like peptide-1

GRP:

Gastrin-releasing peptide

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

HACA:

Human anti-chimeric antibody

HAHA:

Human anti-human antibody

HAMA:

Human anti-mouse antibody

KI:

Potassium iodide

LET:

Linear energy transfer

MIBG:

Meta-iodobenzylguanidine

MIT:

Monoiodotyrosine

NET:

Neuroendocrine tumor

NHL:

Non-Hodgkin’s lymphoma

NIS:

Sodium-iodide symporter

PRRT:

Peptide receptor radionuclide therapy

RGD:

Tripeptide composed of L-arginine, glycine, and L-aspartic acid

RIT:

Radioimmunotherapy

SSTR:

Somatostatin receptors

T3:

3,5,3′-Triiodothyronine

T4:

3,5,3′,5′-Tetraiodothyronine

TSH:

Thyroid stimulating hormone

Suggested Readings

  1. Baum RP, editor. Therapeutic nuclear medicine. New York: Springer; 2014.

    Google Scholar 

  2. Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, Giammarile F, European Association of Nuclear Medicine (EANM). EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  PubMed  Google Scholar 

  3. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. New York: Churchill Livingston; 2004.

    Google Scholar 

  5. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.

    Article  CAS  PubMed  Google Scholar 

  6. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G, EANM. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  7. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Herbert JC, Eckelman WC, Neumann RD, editors. Nuclear medicine – diagnosis and therapy. New York: Thieme Medical Publishers; 1996.

    Google Scholar 

  9. IAEA. Good practice for introducing radiopharmaceuticals for clinical use. Vienna: International Atomic Energy Agency (IAEA); 2015.

    Google Scholar 

  10. IAEA. Operational guidance on Hospital radiopharmacy. Vienna: International Atomic Energy Agency (IAEA); 2008.

    Google Scholar 

  11. IAEA. Radiopharmaceuticals for sentinel lymph node detection: status and trends. Vienna: International Atomic Energy Agency (IAEA); 2015.

    Google Scholar 

  12. IAEA. Technetium-99m radiopharmaceuticals: status and trends. Vienna: International Atomic Energy Agency (IAEA); 2010.

    Google Scholar 

  13. Knapp FF, Dash A. Radiopharmaceuticals for therapy. New Delhi: Springer; 2016.

    Book  Google Scholar 

  14. Kowalsky RJ, Falen SW, editors. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 3rd ed. Washington, DC: American Pharmacists Association; 2011.

    Google Scholar 

  15. Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJ, European Association of Nuclear Medicine (EANM), et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941–59.

    Article  CAS  PubMed  Google Scholar 

  16. Owunwanne A, Patel M, Sadek S, editors. The handbook of radiopharmaceuticals. New York: Springer; 1995.

    Google Scholar 

  17. Schwochau K, editor. Technetium: chemistry and radiopharmaceuticals. Hoboken: Wiley; 2000.

    Google Scholar 

  18. Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand M, et al. The SNM practice guideline for therapy of thyroid disease with 131I 3.0*. J Nucl Med. 2012;53:1633–51.

    Article  PubMed  Google Scholar 

  19. Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.

    Article  PubMed  Google Scholar 

  20. Tennvall J, Fischer M, Bischof Delaloye A, Bombardieri E, Bodei L, et al. EANM procedure guideline for radioimmunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2007;34:616–22.

    Article  PubMed  Google Scholar 

  21. Theobald T, editor. Sampson’s texbook of radiopharmacy. 4th ed. London: Pharmaceutical Press; 2010.

    Google Scholar 

  22. Vallabhajosula S. Molecular imaging – radiopharmaceuticals for PET and SPECT. New York: Springer; 2009.

    Google Scholar 

  23. Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals: radiochemistry and applications. Hoboken: Wiley; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Orsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Orsini, F., Mazzarri, S., Puta, E., Guidoccio, F., Lorenzoni, A., Mariani, G. (2016). Radiopharmaceuticals for Therapy. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Radiopharmaceuticals for Therapy
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_34-2

  2. Original

    Radiopharmaceuticals for Therapy
    Published:
    13 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_34-1