Skip to main content

Nuclear Medicine in the Assessment of Adverse Effects of Cancer Therapy in the Lung, Kidney, and Gastrointestinal Tract

Nuclear Oncology

Abstract

Radiotherapy or chemotherapy and new drugs and strategies in oncology can produce damage in normal organs and tissues affecting the quality of life of the patient. Pulmonary toxicity is frequently seen in patients treated with bleomycin or other chemotherapeutic agents. The most common clinical form of bleomycin pulmonary toxicity is the subacute condition, which may progress to lung fibrosis and death, if not recognized and appropriately managed. The diagnosis is usually established by a combination of clinical, radiographic, and pulmonary function test abnormalities. X-ray and high-resolution CT scan findings are used to identify pulmonary fibrosis. 67Ga-citrate scintigraphy has been used to detect and assess the extent of pulmonary toxicity related to bleomycin in patients who otherwise have normal chest radiographs.

Since conventional CT scanning is not able to distinguish fibrosis and active inflammation, [18F]FDG-PET has been suggested as a tool to indicate the resolution of disease activity. Moreover, [18F]FDG-PET could be useful to detect early preclinical pneumonitis induced by bleomycin. As pulmonary permeability can be altered by chemotherapy, 99mTc-DTPA aerosols can be used to assess a reduced epithelial permeability.

Acute radiation lung injury can occur within 1–3 months after radiation therapy of the thorax, whereas lung fibrosis can develop 6–24 months later, leading to progressive impairment of pulmonary function. Clinical manifestations, chest radiographs, and pulmonary function tests may help to establish an early diagnosis. Scintigraphic abnormalities can be demonstrated in the acute phase often before radiologic changes become apparent by 67Ga-citrate scintigraphy. Moreover, 111In-pentetreotide may have a role in the differential diagnosis of patients with complaints after radiotherapy and in the monitoring of the response to corticosteroid therapy. [18F]FDG uptake in the irradiated region can be observed up to about 2 months following therapy. The persistence of activity beyond 8 weeks raises the likelihood of persistence of disease within the irradiated region.

Lung scintigraphy with 99mTc-DTPA aerosol or 99mTc-MAA (macroaggregates of albumin) has been performed to assess radiation-induced ventilation/perfusion changes.

Drugs for the treatment of abdominal malignancies, such as cisplatin and ifosfamide, and abdominal radiation can cause renal damage.

Chemotherapy-induced nephropathy can be identified with quantitative measurement of glomerular filtration rate. 99mTc-DTPA has become the preferred radiopharmaceutical because of availability and cost. 99mTc-DMSA scintigraphy can be used to establish tubular dysfunction induced by nephrotoxic drugs. Nuclear medicine techniques also offer the possibility to follow the clinical evolution of radiation nephropathy. Bone scans using 99mTc-MDP can show increased kidney uptake early after radiation in patients with radiation fields including kidneys. Over the subsequent 6–12 months the uptake decreases to normal or below normal levels, associated with the loss of function. Renography with 99mTc-DTPA can be performed to assess radiation nephropathy. 99mTc-DTPA Captopril renography test has been used to investigate the relation between small vessel injury due to radiation and hypertension.

Nuclear medicine examinations can play a role in the detection of radiation-induced digestive tract damage.

In cancers of the cervix, endometrium, ovary, prostate, bladder, or rectum, radiation therapy is often required. Radiation proctitis is usually self-limiting and resolves within a month after the conclusion of therapy. Damage of the small bowel is seen in 0.5–15% of the patients. Chronic injuries to the small bowel are manifest 6 and 24 months after radiation. Ileal dysfunction is due to bile acid malabsortion, to bacterial overgrowth in the small bowel, or to the combination of both. 75Se-homocholic acid conjugated with taurine (75Se-HCAT) and 14C-glycochol breath test can be used to differentiate between normal functioning ileum (both tests negative) and ileal dysfunction (one or both tests positive). The combination of both tests may allow the differentiation between bile acid malabsorption (75Se-HCAT positive) and bacterial overgrowth (75Se-HCAT negative).

These techniques may also help to document the benefit of innovative therapeutic approaches such as the use of somatostatin analogs (SOM230). In cases of radiotherapy and chemotherapy-associated liver injury, radionuclide studies can be performed using 99mTc-iminodiacetic acid or 99mTc-colloid. In patients receiving radiotherapy, the most common finding is the loss of function of the part of the liver involved in the radiation field, with a reduced uptake in irradiated areas. Recently, acute radiation-induced hepatitis has been reported as a potential cause of false-positive findings of malignancy on [18F]FDG-PET scans. Moreover, esophagitis postradiotherapy can be observed on [18F]FDG-PET scans.

Leucocytes labeled with 111In or with 99mTc-HMPAO or [18F]FDG can be used in patients with suspected radiation enterocolitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-deoxy-2-[18F]fluoro-D-glucose

75Se-HCAT:

75Se-Homocholic acid conjugated with taurine

99mTc-DMSA:

99mTc-dimercaptosuccinic acid

99mTc-DTPA:

99mTc-diethylenetriaminepentaacetic acid

99mTc-HMPAO:

99mTc-hexamethylpropyleneamine oxime

99mTc-IDA:

99mTc-iminodiacetic acid

99mTc-MAA:

99mTc-macroaggregated albumin

99mTc-MDP:

99mTc-methylene diphosphonate

AVBD:

chemotherapy regimen based on adriamycin, vinblastine, bleomycin and dacarbazine

CT:

X-ray computed tomography

DLCO:

Diffusing capacity of the lung for carbon monoxide

EDTA:

Ethylenediaminetetraacetic acid

GFR:

Glomerular Filtration Rate

GI:

Gastrointestinal

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

MIP:

Maximum Intensity Projection

NSCLC:

Non-small cell lung cancer

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

ROS:

Reactive oxygen species

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/Computed tomography

References

  1. Makrilia N, Syrigou E, Kaklamanos I, Manolopoulos L, Saif MW. Hypersensitivity reactions associated with platinum antineoplastic agents: a systematic review. Met Based Drugs. 2010; 2010:pii: 207084.

    Google Scholar 

  2. Duggan DB, Petroni GR, Johnson JL, et al. Randomised comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of an intergroup trial. J Clin Oncol. 2003;21:607–14.

    Article  CAS  PubMed  Google Scholar 

  3. Martin WG, Ristow KM, Habermann TM, et al. Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin’s lymphoma. J Clin Oncol. 2005;23:7614–20.

    Article  CAS  PubMed  Google Scholar 

  4. Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120:617–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ginsberg SJ, Comis RL. The pulmonary toxicity of antineoplastic agents. Semin Oncol. 1982;9:34–51.

    CAS  PubMed  Google Scholar 

  6. Sriram N, Kalayarasan S, Sudhandiran G. Epigallocatechin-3- gallate exhibits anti- fibrotic effect by attenuating bleomycin induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem Biol Interact. 2009;180:271–80.

    Article  CAS  PubMed  Google Scholar 

  7. Okuma T, Terasaki Y, Kaikita K, Kobayashi H, Kuziel WA, Kawasuji M, Takeya M. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage in filtration and production of macrophage-derived matrix metalloproteinases. J Pathol. 2004;204:594–604.

    Article  CAS  PubMed  Google Scholar 

  8. Rossi SE, Erasmus JJ, McAdams HP, Sporn TA, Goodman PC. Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics. 2000;20:1245–59.

    Article  CAS  PubMed  Google Scholar 

  9. Kazama T, Faria SC, Uchida Y, Ito H, Macapinlac HA. Pulmonary drug toxicity: FDG-PET findings in patients with lymphoma. Ann Nucl Med. 2008;22:111–4.

    Article  PubMed  Google Scholar 

  10. Ziessman HA, O’Malley JP, Thrall JH. Infection and inflammation. In: Nuclear medicine, the requisites, 3. Philadelphia: Elsevier-Mosby; 2006. p. 386–7.

    Google Scholar 

  11. Bekerman C, Hoffer PB, Bitran JD, Gupta RG. Gallium-67 citrate imaging studies of the lung. Semin Nucl Med. 1980;10:286–301.

    Article  CAS  PubMed  Google Scholar 

  12. Mac Mahon H, Bekerman C. The diagnostic significance of gallium lung uptake in patients with normal chest radiographs. Radiology. 1978;127:189–93.

    Article  CAS  Google Scholar 

  13. Kostakoglu L, Goldsmith SJ. 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med. 2003;44:224–39.

    PubMed  Google Scholar 

  14. Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics. 2005;25:191–207.

    Article  PubMed  Google Scholar 

  15. Castellucci P, Zinzani PL, Pourdehnad M, Alinari L, Nanni C, Farsad M, et al. 18F FDG PET in malignant lymphoma: significance of positive findings. Eur J Nucl Med Mol Imaging. 2005;32:749–56.

    Article  CAS  PubMed  Google Scholar 

  16. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol. 2001;12:29–37.

    Article  PubMed  Google Scholar 

  17. Morikawa M, Demura Y, Mizuno S, Ameshima S, Ishizaki T, Okazawa H. Positron emission tomography imaging of drug-induced pneumonitis. Ann Nucl Med. 2008;22:335–8.

    Article  PubMed  Google Scholar 

  18. Kirsch J, Arrossi AV, Yoon JK, Wu G, Neumann DR. FDG positron emission tomography/computerized tomography features of bleomycin-induced pneumonitis. J Thorac Imaging. 2006;21:228–30.

    Article  PubMed  Google Scholar 

  19. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, et al. Increased 18F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med. 2002;43:658–63.

    CAS  PubMed  Google Scholar 

  20. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose inturpentine-induced inflammatory tissue. J Nucl Med. 1995;36:1301–6.

    CAS  PubMed  Google Scholar 

  21. Hansson L, Ohlsson T, Valind S, Sandell A, Luts A, Jeppsson B, et al. Glucose utilisation in the lungs of septic rats. Eur J Nucl Med. 1999;26:1340–4.

    Article  CAS  PubMed  Google Scholar 

  22. Yamane T, Daimaru O, Ito S, et al. Drug-induced pneumonitis detected earlier by 18F-FDG-PET than by high-resolution CT: a case report with non-Hodgkin’s lymphoma. Ann Nucl Med. 2008;22:719–22.

    Article  PubMed  Google Scholar 

  23. von Rohr L, Klaeser B, Joerger M, Kluckert T, Cerny T, Gillessen S. Increased pulmonary FDG uptake in bleomycin associated pneumonitis. Onkologie. 2007;30:320–3.

    Google Scholar 

  24. Buchler T, Bomanji J, Lee SM. FDG-PET in bleomycin-induced pneumonitis following ABVD chemotherapy for Hodgkin’s disease – a useful tool for monitoring pulmonary toxicity and disease activity. Haematologica. 2007;92:e120–1.

    Article  CAS  PubMed  Google Scholar 

  25. Connerotte T, Lonneux M, de Meeûs Y, Hermans C, Vekemans MC, Ferrant A, Van Den Neste E. Use of 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography in the early diagnosis of asymptomatic bleomycin-induced pneumonitis. Ann Hematol. 2008;87:943–5.

    Article  PubMed  Google Scholar 

  26. Ziessman HA, O’Malley JP, Thrall JH. Ventilation perfusion scintigraphy. In: Nuclear medicine, the requisites. 3rd ed. Philadelphia: Elsevier-Mosby; 2006. p. 513.

    Google Scholar 

  27. Graham MM. Scintigraphy. In: James RJ, Stephen GS, Richard KA, editors. Comprehensive respiratory medicine. London: Harcourt-Mosby; 2001.

    Google Scholar 

  28. O’Doherty MJ, Van de Pette JE, Page CJ, Bateman NT, Singh AK, Croft DN. Pulmonary permeability in hematologic malignancies. Effects of the disease and cytotoxic agents. Cancer. 1986;58:1286–8.

    Article  PubMed  Google Scholar 

  29. Ishizaka A. Assessment of pulmonary epithelial permeability in interstitial lung diseases. Nihon Kokyuki Gakkai Zasshi. 1999;37:515–25.

    CAS  PubMed  Google Scholar 

  30. Graves PR, Siddiqui F, Anscher MS, Movsas B. Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol. 2010;20:201–7.

    Article  PubMed  Google Scholar 

  31. Valdés Olmos RA, van Zandwijk N, Boersma LJ, Hoefnagel CA, Baas P, Baars JB, Muller SH, Lebesque JV. Radiation pneumonitis imaged with indium-111 pentetreotide. J Nucl Med. 1996;37:584–8.

    PubMed  Google Scholar 

  32. Kataoka M, Kawamura M, Itoh H, Hamamoto K. Gallium-67-citrate scintigraphy forthe early detection of radiation pneumonitis. Clin Nucl Med. 1992;17:27–31.

    Article  CAS  PubMed  Google Scholar 

  33. Lebtahi R, Moreau S, Marchand-Adam S, et al. Increased uptake of 111In-octreotide in idiopathic pulmonary fibrosis. J Nucl Med. 2006;47:1281–7.

    CAS  PubMed  Google Scholar 

  34. Ha L, Mansberg R, Nguyen D, Bui C. Increased activity on In-111 octreotide imaging due to radiation fibrosis. Clin Nucl Med. 2008;33:46–8.

    Article  PubMed  Google Scholar 

  35. Banzo J, Prats E, Razola P, Tardín L, Benito JL, Andrés A, Santapau A. 111In-DTPAOC SPECT-CT in radiation pulmonary fibrosis. Rev Esp Med Nucl. 2009;28:81–2.

    Article  CAS  PubMed  Google Scholar 

  36. Quirce Pisano R, Banzo Marraco I, Jiménez-Bonilla JF, Martínez-Rodríguez I, Sainz Esteban A, Carril Carril JM. Potential sources of diagnostic pitfall and variants in FDG-PET/CT. Rev Esp Med Nucl. 2008;27:130–59.

    Article  CAS  PubMed  Google Scholar 

  37. Song H, Yu JM, Kong FM, Lu J, Bai T, Ma L, Fu Z. [18F]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography in predicting radiation pneumonitis. Chin Med J. 2009;122:1311–5.

    PubMed  Google Scholar 

  38. Groth S, Zaric A, Sørensen PB, Larsen J, Sørensen PG, Rossing N. Regional lung function impairment following post-operative radiotherapy for breast cancer using direct or tangential field techniques. Br J Radiol. 1986;59:445–51.

    Article  CAS  PubMed  Google Scholar 

  39. Shinohara S, Arikawa K. Radioisotopic assessment on development of radiation pneumonitis and fibrositis. Australas Radiol. 1972;16:363–6.

    Article  CAS  PubMed  Google Scholar 

  40. Prato FS, Kurdyak R, Saibil EA, Rider WD, Aspin N. Physiological and radiographic assessment during the development of pulmonary radiation fibrosis. Radiology. 1977;122:389–97.

    Article  CAS  PubMed  Google Scholar 

  41. Daugaard G, Abildgaard U. Cisplatin nephrotoxicity. Cancer Chemother Pharmacol. 1989;25:1–9.

    Article  CAS  PubMed  Google Scholar 

  42. Valdés Olmos RA. Chemotherapy-induced tubular injury and 99mTc-DMSA. In: Valdés Olmos RA, editor. The role of nuclear medicine in the detection of organ injury and adverse effects of cancer therapy. Thesis, University van Amsterdam; 1994. p. 37.

    Google Scholar 

  43. Pratt CB, Meyer WH, Jenkins JJ, Avery L, McKay CP, Wyatt RJ, Hancock ML. Ifosfamide, Fanconi’s syndrome, and rickets. J Clin Oncol. 1991;9:1495–9.

    Article  CAS  PubMed  Google Scholar 

  44. Van Luijk WH, Ensing GJ, Meijer S, Donker AJ, Piers DA. Is the relative 99mTc-DMSA clearance a useful marker of proximal tubular dysfunction? Eur J Nucl Med. 1984;9:439–42.

    Article  CAS  PubMed  Google Scholar 

  45. Anninga JK, De Kraker J, Hoefnagel CA, Vaoute PA. Ifosfamide induced nephrotoxicity evaluated by 99mTc-DMSA renal scintigraphy. Med Pediatr Oncol. 1990;18:406.

    Google Scholar 

  46. Caglar M, Yarís N, Akyuz C. The utility of 99mTc-DMSA and 99mTc-EC scintigraphy for early diagnosis of ifosfamide induced nephrotoxicity. Nucl Med Commun. 2001;22:1325–32.

    Article  CAS  PubMed  Google Scholar 

  47. Anninga JK, Valdés Olmos RA, de Kraker J, van Tinteren H, Hoefnagel CA, van Royen EA. Technetium-99m dimercaptosuccinic acid and ifosfamide tubular dysfunction in children with cancer. Eur J Nucl Med. 1994;21:658–62.

    Article  CAS  PubMed  Google Scholar 

  48. Williams MV. The cellular basis of renal injury by radiation. Br J Cancer Suppl. 1986;7:257–64.

    PubMed  PubMed Central  Google Scholar 

  49. Dewit L, Anninga JK, Hoefnagel CA, Nooijen WJ. Radiation injury in the human kidney: a prospective analysis using specific scintigraphic and biochemical endpoints. Int J Radiat Oncol Biol Phys. 1990;19:977–83.

    Article  CAS  PubMed  Google Scholar 

  50. Verheij M, Dewit LGH, Valdés Olmos RA, Hoefnagel CA, Arisz L. Captopril Tc-99m-DTPA renography in patients with radiation induced renovascular hypertension. In: Schmidt HAE, Hofer R, editors. Nuclear medicine in research and practice. New York: Schattauer Stuttgart; 1992. p. 545–8.

    Google Scholar 

  51. Valdés Olmos RA. Radiation nephropathy. In: Valdés Olmos RA, editor. The role of nuclear medicine in the detection of organ injury and adverse effects of cancer therapy. Thesis, University van Amsterdam; 1994. p. 40.

    Google Scholar 

  52. Allen-Mersh TG, Wilson EJ, Mann CV. Has the incidence of radiation-induced bowel damage following treatment of uterine carcinoma changed in the last 20 years? J R Soc Med. 1986;79:387–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Touboul E, Balosso J, Schlienger M, Laugier A. Radiation injury of the small intestine. Radiobiological, radiopathological aspects; risk factors and prevention. Ann Chir. 1996;50:58–71.

    CAS  PubMed  Google Scholar 

  54. Galland RB, Spencer J. The natural history of clinically established radiation enteritis. In: Galland RB, Spencer J, editors. Radiation enteritis. London: Edward Arnold; 1990. p. 136–46.

    Google Scholar 

  55. Valdés Olmos RA, den Hartog JF, Hoefnagel C, Taal B. Imaging and retention measurements of selenium 75 homocholic acid conjugated with taurine, and the carbon 14 glycochol breath test to document ileal dysfunction due to late radiation damage. Eur J Nucl Med. 1991;18:124–8.

    Article  Google Scholar 

  56. Fu Q, Berbée M, Boerma M, Wang J, Schmid HA, Hauer-Jensen M. The somatostatin analog SOM230 (pasireotide) ameliorates injury of the intestinal mucosa and increases survival after total-body irradiation by inhibiting exocrine pancreatic secretion. Radiat Res. 2009;171:698–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Floyd J, Mirza I, Sachs B, Perry MC. Hepatotoxicity of chemotherapy. Semin Oncol. 2006;33:50–67.

    Article  CAS  PubMed  Google Scholar 

  58. Valdés Olmos RA. Other tracers in injuries of the digestive tract. In: Valdés Olmos RA, editor. The role of nuclear medicine in the detection of organ injury and adverse effects of cancer therapy. Thesis, University van Amsterdam; 1994. p. 36–7.

    Google Scholar 

  59. Nakahara T, Takagi Y, Takemasa K, Mitsui Y, Tsuyuki A, Shigematsu N, Kubo A. Dose-related fluorodeoxyglucose uptake in acute radiation-induced hepatitis. Eur J Gastroenterol Hepatol. 2008;20:1040–4.

    Article  CAS  PubMed  Google Scholar 

  60. Taal BG, Valdés Olmos RA, Boot H, Hoefnagel CA. Assessment of sucralfate coating by sequential scintigraphic imaging in radiation induced esophageal lesions. Gastrointest Endosc. 1995;41:109–14.

    Article  CAS  PubMed  Google Scholar 

  61. Bradley JD, Scott CB, Paris KJ, et al. A phase III comparison of radiation therapy with or without recombinant beta-interferon for poor-risk patients with locally advanced non-small-cell lung cancer (RTOG 93-04). Int J Radiat Oncol Biol Phys. 2002;52:1173–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ahn SJ, Kahn D, Zhou S, et al. Dosimetric and clinical predictors for radiation-induced esophageal injury. Int J Radiat Oncol Biol Phys. 2005;61:335–47.

    Article  PubMed  Google Scholar 

  63. Huang EX, Bradley JD, El Naqa I, et al. Modeling the risk of radiation-induced acute esophagitis for combined Washington University and RTOG trial 93-11 lung cancer patients. Int J Radiat Oncol Biol Phys. 2012;82:1674–9.

    Article  PubMed  Google Scholar 

  64. Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics. 2013;33:1817–34.

    Article  PubMed  Google Scholar 

  65. Levi S, Hodgson HJ. The medical management of radiation enteritis. In: Galland RB, Spencer J, editors. Radiation enteritis. London: Edward Arnold; 1990. p. 176–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Carrió .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

López Mora, D.A., Carrió, I. (2016). Nuclear Medicine in the Assessment of Adverse Effects of Cancer Therapy in the Lung, Kidney, and Gastrointestinal Tract. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history