Skip to main content

From Transit Systems to Models: Data Representation and Collection

  • Chapter
  • First Online:

Part of the book series: Springer Tracts on Transportation and Traffic ((STTT))

Abstract

This chapter deals with the data that form input and output of passenger route choice models. All information about supply and demand that is relevant to passenger route choice must be captured in a formal way in order to be accessible to mathematical choice models. Over time standard conventions for this formalisation have emerged. In order to avoid repetition in Part III, they are presented once in Sect. 5.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfred Chu KK, Chapleau R (2008) Enriching archived smart card transaction data for transit demand modeling. Transp Res Board 2063:63–72

    Article  Google Scholar 

  • Bagchi M, White PR (2005) The potential of public transport smart card data. Transp Policy 12:464–474

    Article  Google Scholar 

  • Barry JJ, Newhouser R, Rahbee A, Sayeda S (2002) Origin and destination estimation in New York City with automated fare system data. Transp Res Board 1817:183–187

    Article  Google Scholar 

  • Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin–destination data from a mobile phone network. IET Intel Transport Syst 1:15–26

    Article  Google Scholar 

  • Caceres N, Wideberg JP, Benitez FG (2008) Review of traffic data estimations extracted from cellular networks. IET Intel Transport Syst 2:179–192

    Article  Google Scholar 

  • Camus R, Longo G, Macorini C (2005) Estimation of transit reliability level-of-service based on automatic vehicle location data. Transp Res Rec 1927:277–286

    Article  Google Scholar 

  • Chan J (2007) Rail transit OD matrix estimation and journey time reliability metrics using automated fare data. Thesis, Massachusetts Institute of Technology, USA

    Google Scholar 

  • Chu KKA, Chapleau R, Trépanier M (2009) Driver-assisted bus interview. Transp Res Board 2105:1–10

    Article  Google Scholar 

  • Csikos D, Currie G (2008) Investigating consistency in transit passenger arrivals: insights from longitudinal automated fare collection data. Transp Res Board 2042:12–19

    Article  Google Scholar 

  • El-Geneidy AM, Strathman JG, Kimpel TJ, Crout D (2006) Effects of bus stop consolidation on passenger activity and transit operations. Transp Res Board 1971:32–41

    Article  Google Scholar 

  • Enei R (2012) The potential role of ICT in favouring a seamless co-modal transport system. Deliverable 3.1 of COMPASS. 7th Framework Program, European Union

    Google Scholar 

  • Feng W, Figliozzi M, Price S, Feng W, Hostetler K (2011) Techniques to visualize and monitor transit fleet operations performance in urban areas. In: Proceedings of the 90th annual meeting of transportation research board. Washington, D.C., USA

    Google Scholar 

  • Frumin M, Zhao J (2012) Analyzing passenger incidence behavior in heterogeneous transit services using Smartcard data and schedule-based assignment. Transp Res Board 2274:52–60

    Article  Google Scholar 

  • Furth PG, Hemily B, Muller THJ, Strathman JG (2003) Uses of archived AVL-APC data to improve transit performance and management : review and potential. Transp Res Board 113

    Google Scholar 

  • Golani H (2007) Use of archived bus location, dispatch, and ridership data for transit analysis. Transp Res 1992:101–112

    Google Scholar 

  • Golledge RG, Gärling T (2001) Spatial behavior in transportation modeling and planning. In: Goulias KG (ed) Transportation systems planning: methods and applications, CRC Press, New York

    Google Scholar 

  • González MC, Hidalgo CA, Barabási A-L (2008) Understanding individual human mobility patterns. Nature 453:779–782

    Article  Google Scholar 

  • Gordon JB (2012) Intermodal passenger flows on London’s public transport network. Massachusetts Institute of Technology, USA

    Google Scholar 

  • Hammerle M, Haynes M, Mcneil S (2005) Use of automatic vehicle location and passenger count data to evaluate bus operations: experience of the Chicago Transit Authority, Illinois. Transp Res Rec 1903:27–34

    Article  Google Scholar 

  • Kusakabe T, Iryo T, Asakura Y (2010) Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 37:731–749

    Article  Google Scholar 

  • Lin J, Ruan M (2009) Probability-based bus headway regularity measure. IET Intel Transport Syst 3:400–408

    Article  Google Scholar 

  • Lin J, Wang P, Barnum DT (2008) A quality control framework for bus schedule reliability. Transp Res E 44:1086–1098

    Article  Google Scholar 

  • Mokhtarian PL, Salomon I (2001) How derived is the demand for travel? Some conceptual and measurement considerations. Transp Res A 35:695–719

    Article  Google Scholar 

  • Moreira-Matias L, Gama J, Mendes-Moreira J, Sousa JF (2010) Validation of both number and coverage of bus Schedules using AVL data. In: Proceedings of the 13th international IEEE conference on intelligent transportation systems (ITSC). Madeira, Portugal

    Google Scholar 

  • Moreira-Matias L, Ferreira C, Gama J, Sousa JF (2012) Bus bunching detection by mining sequences. In: Advances in data mining. Applications and theoretical aspects, Springer, Berlin

    Google Scholar 

  • Munizaga MA, Palma C (2012) Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile. Transp Res C 24:9–18

    Article  Google Scholar 

  • Nielsen OA, Landex A, Frederiksen RD (2009) Passenger delay models for rail networks. In: Wilson NHM, Nuzzolo A (eds) Schedule-based modeling of transportation networks. Springer, New York

    Google Scholar 

  • OECD (2003) OECD environmental indicators. Development, measurement and use. OECD Environmental Directorate, Paris

    Google Scholar 

  • Rahbee AB (2008) Farecard passenger flow model at Chicago transit authority, Illinois. Transp Res Board 2072:3–9

    Article  Google Scholar 

  • Ratti C, Frenchman D, Pulselli RM, Williams S (2006) Mobile landscapes: using location data from cell phones for urban analysis. Environ Plann B 33:727–748

    Article  Google Scholar 

  • Reades J, Calabrese F, Ratti C (2009) Eigenplaces: analysing cities using the space—time structure of the mobile phone network. Environ Plann B 36:824–836

    Article  Google Scholar 

  • Reddy A, Lu A, Kumar S, Bashmakov V, Rudenko S (2009) Entry-only automated fare-collection system data used to infer ridership, rider destinations, unlinked trips, and passenger miles. Transp Res Board 2110:128–136

    Article  Google Scholar 

  • Salicrú M, Fleurent C, Armengol JM (2011) Timetable-based operation in urban transport: Run-time optimisation and improvements in the operating process. Transp Res A 45:721–740

    Google Scholar 

  • Schmöcker JD, Shimamoto H, Kurauchi F (2013) Generation and calibration of transit hyperpaths. Transp Res C 36:406–418

    Article  Google Scholar 

  • Seaborn C, Attanucci J, Wilson NHM (2009) Analyzing multimodal public transport journeys in London with smart card fare payment data. Transp Res Board 2121:55–62

    Article  Google Scholar 

  • Sevtsuk A, Ratti C (2010) Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J Urban Technol 17:41–60

    Article  Google Scholar 

  • Shibayama T, Lemmerer H (2013). The role of ICT in travel data collection. Deliverable D4.2 of COMPASS. 7th Framework Program, European Union

    Google Scholar 

  • Sohn K, Kim D (2008) Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans Veh Technol 57:2703–2713

    Article  Google Scholar 

  • Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit networks. Transp Res B 23:83–102

    Article  Google Scholar 

  • Strathman JG, Kimpel TJ, Kenneth J, Gerhart RL, Callas S (2002) Evaluation of transit operations: data applications of Tri-Met’s automated bus dispatching system. Transportation 29:321–345

    Article  Google Scholar 

  • Strathman JG, Kimpel TJ, Callas S (2003) Headway deviation effects on bus passenger loads : analysis of Tri-Met’s archived AVL-APC data. Report PR126. Portland State University Centre for Urban Studies, Oregon

    Google Scholar 

  • Sun Y, Xu R (2012) Rail transit travel time reliability and estimation of passenger route choice behavior. Transp Res Board 2275:58–67

    Article  Google Scholar 

  • TOOLQIT (2007) Project website. 6th Framework Program, European Union

    Google Scholar 

  • TRANSFORUM (2006) Project website. 6th Framework Program, European Union

    Google Scholar 

  • Utsunomiya M, Attanucci J, Wilson N (2006) Marketing and fare policy potential uses of transit smart card registration and transaction data to improve transit planning. Transp Res Rec 1971:119–126

    Article  Google Scholar 

  • VDV (2008) Integration interface for automatic vehicle management systems – VDV 453, Version 2.4, Schrift des Verbands Deutscher Verkehrsunternehmen. https://www.vdv.de/service/downloads.aspx?id=100844&forced=true, Accessed 20 Oct 2015

  • Wang W, Attanucci JP, Wilson NHM (2011) Bus passenger origin-destination estimation and related analyses using automated data collection systems. J Public Transp 14:131–150

    Article  Google Scholar 

  • Wilson NHM, Zhao J, Rahbee A (2009) The potential impact of automated data collection systems on urban public transport planning. In: Schedule-based modeling of transportation networks, (eds) Wilson A. Nuzzolo, Springer, New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Noekel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noekel, K., Gentile, G., Nathanail, E., Fonzone, A. (2016). From Transit Systems to Models: Data Representation and Collection. In: Gentile, G., Noekel, K. (eds) Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems. Springer Tracts on Transportation and Traffic. Springer, Cham. https://doi.org/10.1007/978-3-319-25082-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25082-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25080-9

  • Online ISBN: 978-3-319-25082-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics