Skip to main content

Dynamic Analysis for Axially Moving Viscoelastic Poynting–Thomson Beams

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 40))

Abstract

This paper is concerned with dynamic characteristics of axially moving beams with the standard linear solid type material viscoelasticity. We consider the Poynting–Thomson version of the standard linear solid model and present the dynamic equations for the axially moving viscoelastic beam assuming that out-of-plane displacements are small. Characteristic behaviour of the beam is investigated by a classical dynamic analysis, i.e., we find the eigenvalues with respect to the beam velocity. With the help of this analysis, we determine the type of instability and detect how the behaviour of the beam changes from stable to unstable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Banichuk, J. Jeronen, M. Kurki, P. Neittaanmäki, T. Saksa, T. Tuovinen, On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates. Int. J. Solids Struct. 48(13), 2015–2025 (2011). doi:10.1016/j.ijsolstr.2011.03.010

    Article  Google Scholar 

  2. N. Banichuk, J. Jeronen, P. Neittaanmäki, T. Tuovinen, Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J. Fluids Struct. 27(7), 986–1005 (2011). doi:10.1016/j.jfluidstructs.2011.07.004

    Article  Google Scholar 

  3. M.H. Ghayesh, M. Amabili, H. Farokhi, Coupled global dynamics of an axially moving viscoelastic beam. Int. J. Non-Linear Mech. 51, 54–74 (2013). doi:10.1016/j.ijnonlinmec.2012.12.008

    Article  Google Scholar 

  4. L. Kong, R.G. Parker, Approximate eigensolutions of axially moving beams with small flexural stiffness. J. Sound Vib. 276(1–2), 459–469 (2004)

    Article  Google Scholar 

  5. A. Kulachenko, P. Gradin, H. Koivurova, Modelling the dynamical behaviour of a paper web. Part I. Comput. Struct. 85(3–4), 131–147 (2007)

    Article  Google Scholar 

  6. U. Lee, H. Oh, Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42(8), 2381–2398 (2005). doi:10.1016/j.ijsolstr.2004.09.026

    Article  Google Scholar 

  7. K. Marynowski, T. Kapitaniak, Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web. Int. J. Non-Linear Mech. 37(7), 1147–1161 (2002). doi:10.1016/S0020-7462(01)00142-1

    Article  MATH  Google Scholar 

  8. K. Marynowski, T. Kapitaniak, Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-Linear Mech. 42(1), 118–131 (2007). doi:10.1016/j.ijnonlinmec.2006.09.006

    Article  MATH  Google Scholar 

  9. E.M. Mockensturm, J. Guo, Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J. Appl. Mech. 72(3), 374–380 (2005). doi:10.1115/1.1827248

    Article  MATH  Google Scholar 

  10. H. Oh, J. Cho, U. Lee, Spectral element analysis for an axially moving viscoelastic beam. J. Mech. Sci. Tech. 18(7), 1159–1168 (2004). doi:10.1007/BF02983290

    Google Scholar 

  11. T. Saksa, N. Banichuk, J. Jeronen, M. Kurki, T. Tuovinen, Dynamic analysis for axially moving viscoelastic panels. Int. J. Solids Struct. 49(23–24), 3355–3366 (2012). doi:10.1016/j.ijsolstr.2012.07.017

    Article  Google Scholar 

  12. H. Seddighi, H. Eipakchi, Natural frequency and critical speed determination of an axially moving viscoelastic beam. Mech. Time-Depend. Mater. 17(4), 529–541 (2013). doi:10.1007/s11043-012-9201-1

    Article  Google Scholar 

  13. Y.B. Seo, Determination of in-plane shear properties by an off-axis tension method and laser speckle photography. J. Pulp Paper Sci. 25(9), 321–325 (1999)

    Google Scholar 

  14. A. Simpson, Transverse modes and frequencies of beams translating between fixed end supports. J. Mech. Eng. Sci. 15(3), 159–164 (1973)

    Article  Google Scholar 

  15. Z. Sobotka, Rheology of Materials and Engineering Structures (Elsevier, Amsterdam, 1984)

    Google Scholar 

  16. Y.-Q. Tang, L.-Q. Chen, Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed. Eur. J. Mech. A Solids 37, 106–121 (2013). doi:10.1016/j.euromechsol.2012.05.010

    Article  MathSciNet  Google Scholar 

  17. M. Vaughan, A. Raman, Aeroelastic stability of axially moving webs coupled to incompressible flows. J. Appl. Mech. 77(2), 021001–021001–17 (2010). doi:10.1115/1.2910902

    Google Scholar 

  18. B. Wang, Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Appl. Math. Mech. 33(6), 817–828 (2012). doi:10.1007/s10483-012-1588-8

    Article  MathSciNet  Google Scholar 

  19. B. Wang, L.-Q. Chen, Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. 328(4–5), 456–466 (2009). doi:10.1016/j.jsv.2009.08.016

    Article  Google Scholar 

  20. J.A. Wickert, C.D. Mote, Classical vibration analysis of axially moving continua. J. Appl. Mech. 57(3), 738–744 (1990). doi:10.1115/1.2897085

    Article  MATH  Google Scholar 

  21. T. Yokoyama, K. Nakai, Evaluation of in-plane orthotropic elastic constants of paper and paperboard, in SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2007 (Springfield, MA), pp. 1505–1511, Bethel, CT. Society for Experimental Mechanics (2007)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Jenny and Antti Wihuri Foundation and the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tytti Saksa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saksa, T., Jeronen, J. (2016). Dynamic Analysis for Axially Moving Viscoelastic Poynting–Thomson Beams. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds) Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-23564-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23564-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23563-9

  • Online ISBN: 978-3-319-23564-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics