Skip to main content

TRUS Biopsy: Is There Still a Role?

  • Chapter
The Prostate Cancer Dilemma

Abstract

Prostate biopsy remains the single most valuable pretreatment source of prognostic information, relating Gleason score, and volume estimates. Compared with sextant biopsy, extended sampling schema involving 12 cores incorporating the apical and lateral peripheral zone offers improved cancer detection rates. Well-reported limitations of systematic TRUS prostate biopsy include both over- and undersampling of disease that may be associated with disease mischaracterization, in addition to low but considerable rates of biopsy-related complications. The integration of additional ultrasonographic parameters including contrast enhancement, Power Doppler Imaging, and elastography has been explored to improve the discrimination of suspicious lesions during biopsy while means to refine initial selection for biopsy utilizing novel serum biomarkers appear to offer specificity beyond PSA and clinical parameters alone. In the setting of an initial negative biopsy, tissue-based methylation assays of histologically benign tissue may improve the negative predictive value of biopsies and reduce the need for repeat sampling. In addition, significant promise is held by the integration of magnetic resonance imaging modalities with TRUS-Bx to offer targeted biopsy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dugan JA, Bostwick DG, Myers RP, et al. The definition and preoperative prediction of clinically insignificant prostate cancer. JAMA. 1996;275(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  2. Tilki D, Schlenker B, John M, et al. Clinical and pathologic predictors of Gleason sum upgrading in patients after radical prostatectomy: results from a single institution series. Urol Oncol. 2011;29(5):508–14.

    Article  PubMed  Google Scholar 

  3. Ploussard G, de la Taille A. Prostate biopsies: let’s move forward. Eur Urol. 2013;64(6):893–4.

    Article  PubMed  Google Scholar 

  4. Lecornet E, Ahmed HU, Hu Y, et al. The accuracy of different biopsy strategies for the detection of clinically important prostate cancer: a computer simulation. J Urol. 2012;188(3):974–80.

    Article  PubMed  Google Scholar 

  5. Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. 2015;33(3):272–7.

    Article  PubMed  Google Scholar 

  6. Swanson GP, Epstein JI, Ha CS, Kryvenko ON. Pathological characteristics of low risk prostate cancer based on totally embedded prostatectomy specimens. Prostate. 2015;75(4):424–9.

    Article  CAS  PubMed  Google Scholar 

  7. Miller GJ, Cygan JM. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration. J Urol. 1994;152(5 Pt 2):1709–13.

    CAS  PubMed  Google Scholar 

  8. Grabstald H, Elliott JL. Transrectal biopsy of the prostate. JAMA. 1953;153(6): 563–565

    Google Scholar 

  9. Hodge KK, McNeal JE, Terris MK, Stamey TA. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol. 1989;142:71.

    CAS  PubMed  Google Scholar 

  10. Siu W, Dunn RL, Shah RB, Wei JT. Use of extended pattern technique for initial prostate biopsy. J Urol. 2005;174:505–9.

    Article  PubMed  Google Scholar 

  11. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C. The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology. 1997;50:562.

    Article  CAS  PubMed  Google Scholar 

  12. Hodge KK, McNeal JE, Stamey TA. Ultrasound guided transrectal core biopsies of the palpably abnormal prostate. J Urol. 1989;142(1):66–70.

    CAS  PubMed  Google Scholar 

  13. Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. 2006;175(5):1605–12.

    Article  PubMed  Google Scholar 

  14. Gore JL, Shariat SF, Miles BJ, et al. Optimal combinations of systematic sextant and laterally directed biopsies for the detection of prostate cancer. J Urol. 2001;165(5):1554–9.

    Article  CAS  PubMed  Google Scholar 

  15. Babaian RJ, Toi A, Kamoi K, et al. A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. J Urol. 2000;163:152–7.

    Article  CAS  PubMed  Google Scholar 

  16. Elabbady AA, Khedr MM. Extended 12-core prostate biopsy increases both the detection of prostate cancer and the accuracy of Gleason score. Eur Urol. 2006;49:49–53.

    Article  PubMed  Google Scholar 

  17. de la Taille A, Antiphon P, Salomon L, et al. Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology. 2003;61:1181.

    Article  PubMed  Google Scholar 

  18. Meng MV, Elkin EP, DuChane J, Carroll PR. Impact of increased number of biopsies on the nature of prostate cancer identified. J Urol. 2006;176:63–8.

    Article  PubMed  Google Scholar 

  19. AUA. Optimal Techniques of Prostate Biopsy and Specimen Handling. White Paper. http://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Biopsy-WhitePaper.pdf. Accessed 22 Feb, 2015.

  20. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines(r)): prostate cancer early detection. Version 1.2014. http://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf. Accessed 22 Feb 2015.

  21. Capitanio U, Karakiewicz PI, Valiquette L, et al. Biopsy core number represents one of foremost predictors of clinically significant gleason sum upgrading in patients with low-risk prostate cancer. Urology. 2009;73(5):1087–91.

    Article  PubMed  Google Scholar 

  22. Chun FK, Steuber T, Erbersdobler A, et al. Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol. 2006;49(5):820–6.

    Article  PubMed  Google Scholar 

  23. Epstein JI, Feng Z, Trock BJ, Pierorazio PM. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary Grades. Eur Urol. 2012;61(5):1019–24.

    Article  PubMed  Google Scholar 

  24. Dinh KT, Mahal BA, Ziehr DR et al. Incidence and predictors of upgrading and upstaging among 10,000 contemporary patients with low-risk prostate cancer. J Urol. 2015;pii: S0022–5347(15)00254–2. doi: 10.1016/j.juro.2015.02.015. [Epub ahead of print].

    Google Scholar 

  25. Borboroglu PG, Comer SW, Riffenburgh RH, Amling CL. Extensive repeat transrectal ultrasound guided prostate biopsy in patients with previous benign sextant biopsies. J Urol. 2000 Jan;163(1):158–62

    Google Scholar 

  26. Serefoglu EC, Altinova S, Ugras NS, et al. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J. 2012;2:1–6.

    Google Scholar 

  27. Clyne M. Prostate cancer: does a negative second biopsy give patients false hope? Nat Rev Urol. 2013;10(6):310.

    Article  PubMed  Google Scholar 

  28. Presti Jr JC, O’Dowd GJ, Miller MC, et al. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol. 2003;169(1):125–9.

    Article  PubMed  Google Scholar 

  29. Ploussard G, Nicolaiew N, Marchand C, et al. Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU Int. 2013;111(6):988–96.

    Article  CAS  PubMed  Google Scholar 

  30. Iczkowski KA, MacLennan GT, Bostwick DG. Atypical small acinar proliferation suspicious for malignancy in prostate needle biopsies: clinical significance in 33 cases. Am J Surg Pathol. 1997;21(12):1489–95.

    Article  CAS  PubMed  Google Scholar 

  31. Alsikafi NF, Brendler CB, Gerber GS, et al. High-grade prostatic intraepithelial neoplasia with adjacent atypia is associated with a higher incidence of cancer on subsequent needle biopsy than high-grade prostatic intraepithelial neoplasia alone. Urology. 2001;57(2):296–300.

    Article  CAS  PubMed  Google Scholar 

  32. Netto GJ, Epstein JI. Widespread high-grade prostatic intraepithelial neoplasia on prostatic needle biopsy: a significant likelihood of subsequently diagnosed adenocarcinoma. Am J Surg Pathol. 2006;30(9):1184–8.

    Article  PubMed  Google Scholar 

  33. Lee MC, Moussa AS, Yu C, et al. Multifocal high grade prostatic intraepithelial neoplasia is a risk factor for subsequent prostate cancer. J Urol. 2010;184(5):1958–62.

    Article  PubMed  Google Scholar 

  34. Raaijmakers R et al. Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology. 2002;60(5):826–30.

    Article  PubMed  Google Scholar 

  35. Loeb S, van den Heuvel S, Zhu X, et al. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur Urol. 2012;61(6):1110–4.

    Article  PubMed  Google Scholar 

  36. Williamson DA, Masters J, Freeman J, Roberts S. Travel-associated extended-spectrum β-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU Int. 2012;109(7):E21–2.

    Article  PubMed  Google Scholar 

  37. Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.

    PubMed Central  PubMed  Google Scholar 

  38. Fujita K, Landis P, McNeil BK. Serial prostate biopsies are associated with an increased risk of erectile dysfunction in men with prostate cancer on active surveillance. J Urol. 2009;182(6):2664–9.

    Article  PubMed  Google Scholar 

  39. Hilton JF, Blaschko SD, Whitson JM, Cowan JE, Carroll PR. The impact of serial prostate biopsies on sexual function in men on active surveillance for prostate cancer. J Urol. 2012;188(4):1252–8.

    Article  PubMed  Google Scholar 

  40. Braun K, Ahallal Y, Sjoberg DD, et al. Effect of repeated prostate biopsies on erectile function in men on active surveillance for prostate cancer. J Urol. 2014;191(3):744–9.

    Article  PubMed  Google Scholar 

  41. Macefield RC, Lane JA, Metcalfe C, et al. Do the risk factors of age, family history of prostate cancer or a higher prostate specific antigen level raise anxiety at prostate biopsy? Eur J Cancer. 2009;45:2569–73.

    Article  PubMed  Google Scholar 

  42. Tekdogan U, Tuncel A, Nalcacioglu V, Kisa C, Aslan Y, Atan A. Is the pain level of patients affected by anxiety during transrectal prostate needle biopsy? Scand J Urol Nephrol. 2008;42:24–8.

    Article  PubMed  Google Scholar 

  43. Peyromaure M, Ravery V, Messas A, Toublanc M, Boccon-Gibod L. Pain and morbidity of an extensive prostate 10-biopsy protocol: a prospective study in 289 patients. J Urol. 2002;167:218–21.

    Article  PubMed  Google Scholar 

  44. Mkinen T, Auvinen A, Hakama M, Stenman UH, Tammela TL. Acceptability and complications of prostate biopsy in population-based PSA screening versus routine clinical practice: a prospective, controlled study. Urology. 2002;60(5):846–50.

    Google Scholar 

  45. Ragavan N, Philip J, Balasubramanian SP, et al. A randomized, controlled trial comparing lidocaine periprostatic nerve block, diclofenac suppository and both for transrectal ultrasound guided biopsy of prostate. J Urol. 2005;174(2):510–3. discussion 513.

    Article  CAS  PubMed  Google Scholar 

  46. Ooi WL, Hawks C, Tan AH, Hayne D. A randomised controlled trial comparing use of lignocaine periprostatic nerve block alone and combined with diclofenac suppository for patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy. BJU Int. 2014;114 Suppl 1:45–9.

    Article  CAS  PubMed  Google Scholar 

  47. Loeb S, Carter HB, Berndt SI, et al. Complications after prostate biopsy: data from SEER-Medicare. J Urol. 2011;186:1830–4.

    Article  PubMed  Google Scholar 

  48. Berger AP, Gozzi C, Steiner H, et al. Complication rate of transrectal ultrasound guided prostate biopsy: a comparison among 3 protocols with 6, 10 and 15 cores. J Urol. 2004;171(4):1478–80. discussion 1480-1.

    Article  PubMed  Google Scholar 

  49. Loeb S, Vellekoop A, Ahmed HU, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64(6):876–92.

    Article  PubMed  Google Scholar 

  50. Liss MA, Taylor SA, Batura D, et al. Fluoroquinolone resistant rectal colonization predicts risk of complications after transrectal prostate biopsy. J Urol. 2014;192(6):1673–8.

    Article  PubMed  Google Scholar 

  51. Taylor AK, Zembower TR, Nadler RB, et al. Targeted antimicrobial prophylaxis using rectal swab cultures in men undergoing transrectal ultrasound guided prostate biopsy is associated with reduced incidence of postoperative infectious complications and cost of care. J Urol. 2012;187(4):1275–9.

    Article  CAS  PubMed  Google Scholar 

  52. Abughosh Z, Margolick J, Goldenberg SL, et al. A prospective randomized trial of povidone-iodine prophylactic cleansing of the rectum before transrectal ultrasound guided prostate biopsy. J Urol. 2013;189(4):1326–31.

    Article  CAS  PubMed  Google Scholar 

  53. Prostate Cancer Prevention Trial (PCPT) Prostate Cancer Risk Calculator. Available at http://deb.uthscsa.edu/URORiskCalc/Pages/uroriskcalc.jsp. Accessed 25 Feb, 2015.

  54. Thompson IM, Chi C, Ankerst DP, Goodman P, Tangen C, Lippman S, et al. Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J Natl Cancer Inst. 2006;98:1128–33.

    Article  CAS  PubMed  Google Scholar 

  55. Ankerst DP, Till C, Boeck A, Goodman P, Tangen CM, Feng Z, et al. The impact of prostate volume, number of biopsy cores, and AUA symptom score on the sensitivity of cancer detection using the Prostate Cancer Prevention Trial Risk Calculator. J Urol. 2013;190(1):70–6.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Parekh DJ, Ankerst DP, Higgins BA, et al. External validation of the Prostate Cancer Prevention Trial risk calculator in a screened population. Urology. 2006;68(6):1152–5.

    Article  PubMed  Google Scholar 

  57. Nguyen CT, Yu C, Moussa A, Kattan MW, Jones JS. Performance of prostate cancer prevention trial risk calculator in a contemporary cohort screened for prostate cancer and diagnosed by extended prostate biopsy. J Urol. 2010;183(2):529–33.

    Article  PubMed  Google Scholar 

  58. Parekh DJ, Punnen S, Sjoberg DD et al. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur Urol. 2014;pii: S0302–2838(14)01035–5. doi: 10.1016/j.eururo.2014.10.021. [Epub ahead of print].

    Google Scholar 

  59. Vedder MM, de Bekker-Grob EW, Lilja HG, et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol. 2014;66(6):1109–15.

    Article  CAS  PubMed  Google Scholar 

  60. Nordström T, Vickers A, Assel M et al. Comparison between the four-kallikrein panel and prostate health index for predicting prostate cancer. Eur Urol. 2014;pii: S0302–2838(14)00752–0. doi: 10.1016/j.eururo.2014.08.010. [Epub ahead of print].

    Google Scholar 

  61. Bilger SA, Deering RE, Brawer MK. Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol. 1993;24:220–6.

    Article  Google Scholar 

  62. Donnelly EF, Geng L, Wojcicki WE, Fleischer AG, Hallahan DE. Quantified power Doppler US of tumor blood flow correlates with microscopic quantification of tumor blood vessels. Radiology. 2001;219:166–70.

    Article  CAS  PubMed  Google Scholar 

  63. Remzi M, Dobrovits M, Reissigl A, et al. Can Power Doppler enhanced transrectal ultrasound guided biopsy improve prostate cancer detection on first and repeat prostate biopsy? Eur Urol. 2004;46(4):451–6.

    Article  PubMed  Google Scholar 

  64. Sauvain JL, Sauvain E, Rohmer P, et al. Value of transrectal power Doppler sonography in the detection of low-risk prostate cancers. Diagn Interv Imaging. 2013;94(1):60–7.

    Article  PubMed  Google Scholar 

  65. Rifkin MD, Dahnert W, Kurtz AB. State of the art: endorectal sonography of the prostate gland. AJR Am J Roentgenol. 1990;154:691–700.

    Article  CAS  PubMed  Google Scholar 

  66. Engelbrecht MR, Barentsz JO, Jager GJ, et al. Prostate cancer staging using imaging. BJU Int. 2000;86 Suppl 1:123–34.

    PubMed  Google Scholar 

  67. Jung AJ, Coakley FV, Shinohara K, et al. Local staging of prostate cancer: comparative accuracy of T2-weighted endorectal MR imaging and transrectal ultrasound. Clin Imaging. 2012;36(5):547–52.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Xie SW, Li HL, Du J, et al. Contrast-enhanced ultrasonography with contrast-tuned imaging technology for the detection of prostate cancer: comparison with conventional ultrasonography. BJU Int. 2012;109:1620–6.

    Article  PubMed  Google Scholar 

  69. Jiang J, Chen YQ, Zhu YK, et al. Factors influencing the degree of enhancement of prostate cancer on contrast-enhanced transrectal ultrasonography: correlation with biopsy and radical prostatectomy specimens. Br J Radiol. 2012;85:e979–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sano F, Terao H, Kawahara T, et al. Contrast-enhanced ultrasonography of the prostate: various imaging findings that indicate prostate cancer. BJU Int. 2011;107:1404–10.

    Article  PubMed  Google Scholar 

  71. Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60:324–30.

    Article  PubMed  Google Scholar 

  72. Halpern EJ, Gomella LG, Forsberg F, et al. Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double blind trial of dutasteride pretreatment. J Urol. 2012;188(5):1739–45.

    Article  CAS  PubMed  Google Scholar 

  73. Wang L, Li L, Guo Y, et al. Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer. Prostate. 2013;73(11):1147–58.

    Article  CAS  PubMed  Google Scholar 

  74. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28:13–20.

    Article  PubMed  Google Scholar 

  75. Salomon G, Köllerman J, Thederan I, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54(6):1354–62.

    Article  PubMed  Google Scholar 

  76. Zhang M, Nigwekar P, Castaneda B, Hoyt K, Joseph JV, di Sant’Agnese A, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34:1033–42.

    Article  PubMed  Google Scholar 

  77. Brock M, von Bodman C, Palisaar RJ, et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol. 2012;187(6):2039–43.

    Article  PubMed  Google Scholar 

  78. Brock M, Eggert T, Palisaar RJ, et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer. J Urol. 2013;189(1):93–8.

    Article  PubMed  Google Scholar 

  79. Troyer DA, Lucia MS, de Bruine AP, et al. Prostate cancer detected by methylated gene markers in histopathologically cancer-negative tissues from men with subsequent positive biopsies. Cancer Epidemiol Biomark Prev. 2009;18(10):2717–22.

    Article  CAS  Google Scholar 

  80. Stewart GD, Van Neste L, Delvenne P, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.

    Article  PubMed  Google Scholar 

  81. Partin AW, Van Neste L, Klein EA, et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014;192(4):1081–7. doi:10.1016/j.juro.2014.04.013. Epub 2014 Apr 18.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Wojno KJ, Costa FJ, Cornell RJ, et al. Reduced rate of repeated prostate biopsies observed in ConfirmMDx Clinical Utility Field Study. Am Health Drug Benefits. 2014;7(3):129–34.

    PubMed Central  PubMed  Google Scholar 

  83. Pinsky PF, Crawford ED, Kramer BS, et al. Repeat prostate biopsy in the prostate, lung, colorectal and ovarian cancer screening trial. BJU Int. 2007;99:775–9.

    Article  CAS  PubMed  Google Scholar 

  84. Numao N, Yoshida S, Komai Y, et al. Usefulness of prebiopsy multiparametric magnetic resonance imaging and clinical variables to reduce initial prostate biopsy in men with suspected clinically localized prostate cancer. J Urol. 2013;190:502–8.

    Article  PubMed  Google Scholar 

  85. Jambor I, Kahkonen E, Taimen P, et al. Prebiopsy multiparametric 3T prostate MRI in patients with elevated PSA, normal digital rectal examination, and no previous biopsy. J Magn Reson Imaging. 2015;41(5):1394–404.

    Article  PubMed  Google Scholar 

  86. Rastinehad AR, Turkbey B, Salami SS, et al. Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol. 2014;191(6):1749–54.

    Article  PubMed  Google Scholar 

  87. Oto A, Yang C, Kayhan A, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011;197(6):1382–90.

    Article  PubMed  Google Scholar 

  88. Testa C, Schiavina R, Lodi R, et al. Accuracy of MRI/MRSI-based transrectal ultrasound biopsy in peripheral and transition zones of the prostate gland in patients with prior negative biopsy. NMR Biomed. 2010;23(9):1017–26.

    Article  CAS  PubMed  Google Scholar 

  89. Donati OF, Mazaheri Y, Afaq A, et al. Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology. 2014;271(1):143–52.

    Article  PubMed  Google Scholar 

  90. Pokorny MR, de Rooij M, Duncan E, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2014;66(1):22–9.

    Article  PubMed  Google Scholar 

  91. Wysock JS, Rosenkrantz AB, Huang WC, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol. 2014;66(2):343–51.

    Article  PubMed  Google Scholar 

  92. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Moore CM, Petrides N, Emberton M. Can MRI replace serial biopsies in men on active surveillance for prostate cancer? Curr Opin Urol. 2014;24(3):280–7.

    Article  PubMed  Google Scholar 

  94. Bul M, Zhu X, Valdagni R, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol. 2013;63:597–603.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuto Shinohara M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leapman, M.S., Shinohara, K. (2016). TRUS Biopsy: Is There Still a Role?. In: Stone, N., Crawford, E. (eds) The Prostate Cancer Dilemma. Springer, Cham. https://doi.org/10.1007/978-3-319-21485-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21485-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21484-9

  • Online ISBN: 978-3-319-21485-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics