Skip to main content

Prevention of Microvascular Complications of Diabetes: General Overview

  • Living reference work entry
  • First Online:
Principles of Diabetes Mellitus
  • 369 Accesses

Abstract

Chronic hyperglycemia in patients with diabetes produces characteristic pathologic findings in the nerve, retina, and kidneys. These findings, which result from elevated intravascular glucose flooding overburdened and defective metabolic pathways, cause effects at the molecular, macromolecular, cellular, and tissue levels. Characteristic findings at basement membranes and vascular cells appear to be due to, at least in part, protein kinase C activation, altered activity of transcription factors and growth factors, and overall increased reactive oxygen species formation and inflammation. Glucose also promotes cross-linking of proteins and nucleic acids to alter cellular structure and function via advanced glycosylated end products. The prevention of complications is the main rationale for treating hyperglycemia, and strategies that result in lowered HbA1c values have been shown to reduce complications. Research that deciphers the manner in which hyperglycemia leads to these complications provides potential additional targets for preventing or ameliorating complications, apart from the standard strategy of lowering HbA1c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Advani A, Connelly KA et al. Role of the eNOS-NO system in regulating the antiproteinuric effects of VEGF Receptor 2 inhibition in diabetes. Biomed Res Int. 2013;2013:1–8. article ID 201475.

    Google Scholar 

  2. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:814–20.

    Article  Google Scholar 

  3. Reidy K, Kang HM, et al. Molecular mechanisms of diabetic kidney disease. JCI. 2014;124(6):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldin A, Beckman JA, et al. Advanced glycation end products. Sparking the development vascular injury. Circulation. 2006;114:597–605.

    Article  CAS  PubMed  Google Scholar 

  5. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  6. The UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  7. Action to Control Cardiovascular Risk in Diabetes (ACCORD). Effects of intensive glucose lowering in Type 2 diabetes. N Engl J Med. 2008;358:2545–2559.

    Google Scholar 

  8. The Advance Collaborative Group. Intensive control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  Google Scholar 

  9. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research group. Retinopathy and nephropathy in patients with Type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342:381–9.

    Article  PubMed Central  Google Scholar 

  10. Stratton IM, Adler AI, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35). BMJ. 2000;321:405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holman RR, Paul SK, et al. 10 year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  12. Monnier VM, Bautista O, The DCCT Collagen Ancillary Study Group, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. Diabetes. 1999;48:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giacocco F, Du X, et al. GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS generating feedback loop. Diabetes. 2015;64:3273–84.

    Article  Google Scholar 

  14. El-Osta A, Brassacchio E, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He Z, King GL. Microvascular complications of diabetes. Endocrinol Metab Clin N Am. 2004;33:215–38.

    Article  CAS  Google Scholar 

  16. Schram MT, Chaturvedi N, Schalkwijk C, et al. The EURODIAB prospective complications study group: vascular risk factors and markers of endothelial dysfunction as determinants of inflammatory markers in Type 1 diabetes. Diabetes Care. 2003;26:2165–73.

    Article  PubMed  Google Scholar 

  17. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3:4656.

    Article  Google Scholar 

  18. Powers AC. Diabetes mellitus. In: Jameson JL. Harrison’s endocrinology. New York: McGraw Hill; 2006. p. 299–300. Ch. 17.

    Google Scholar 

  19. Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes. 1994;43:1122–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from hemodynamics to molecular pathology. Eur J Clin Invest. 2004;34:785.

    Article  CAS  PubMed  Google Scholar 

  21. The PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the PKC beta inhibitor DR study multicenter randomized clinical trial. Diabetes. 2005;54:2188–97.

    Article  Google Scholar 

  22. Tuttle KR, Bakris GL, Toto RD, McGill JB, et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28:2686–90.

    Article  CAS  PubMed  Google Scholar 

  23. Tesafaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50.

    Article  Google Scholar 

  24. Young RJ, Ewing DJ, Clarke BF. Chronic and remitting painful diabetic polyneuropathy: correlations with clinical features and subsequent changes in neurophysiology. Diabetes Care. 1988;11:34.

    Article  CAS  PubMed  Google Scholar 

  25. Cameron NE, Cotter MA. Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev. 2002;18:315.

    Article  CAS  PubMed  Google Scholar 

  26. Monnier L, Mas E, Gine C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–7.

    Article  CAS  PubMed  Google Scholar 

  27. Keenan HA, Costacou T, Sun JK, et al. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration. Diabetes Care. 2007;30:1995–7.

    Article  CAS  PubMed  Google Scholar 

  28. Thorn LM, Forsblom C, Fagerudd J, et al. Clustering of risk factors of parents of patients with type 1 diabetes and nephropathy. Diabetes Care. 2007;30:1162–7.

    Article  PubMed  Google Scholar 

  29. The Diabetes Control and Complications Research Group. Clustering of long term complications in families with diabetes in the diabetes control and complications trial. Diabetes. 1997;46:1829.

    Article  Google Scholar 

  30. Cai H. NAD(P)H oxidase dependent self propagation of hydrogen peroxide and vascular disease. Circ Res. 2005;96:818–22.

    Article  CAS  PubMed  Google Scholar 

  31. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide formation blocks three pathways of hyperglycemic damage. Nature. 2000;404:787–90.

    Article  CAS  PubMed  Google Scholar 

  32. Brownlee M, Cerami A, Vlassara H. Advanced glycation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–21.

    Article  CAS  PubMed  Google Scholar 

  33. Thalias-Bourke V, Jandeleit-Dahm K, et al. NOX-4 and progressive kidney disease. Curr Opin Nephrol Hypertens. 2015;24(1):74–80.

    Article  Google Scholar 

  34. Vlassara H, Striker LJ, Teichberg S, et al. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A. 1994;22:11704–8.

    Article  Google Scholar 

  35. Advani A, Kelly DJ, et al. Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions. Proc Natl Acad Sci U S A. 2007;104(36):14448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanji N, Markowitz GS, et al. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol. 2000;11:1656–66.

    CAS  PubMed  Google Scholar 

  37. Wang K, Zhou Z, Zhang M, et al. Peroxisome proliferator activator receptor gamma down regulates receptor for advanced glycation end products and inhibits smooth muscle cell proliferation in diabetic and nondiabetic rat carotid artery injury model. J Pharmacol Exp Ther. 2006;317:37–43.

    Article  CAS  PubMed  Google Scholar 

  38. Hammes HP, Marian S, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A. 1991;88:11555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ellis E, Good BH. Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism. 1991;40:1016–9.

    Article  CAS  PubMed  Google Scholar 

  40. Li YM, Steffes M, Donnely T, et al. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci U S A. 1996;93:3902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramsasamy R, Shekthman A, Schmidt AM. The multiple faces of RAGEs – prospects for treating and tracking metabolic and inflammatory disease. Exp Opin Ther Targ. 2015;11:1–16.

    Google Scholar 

  42. Litwinoff E, Hurtado del Pozo C. Emerging targets for therapeutic development in diabetes and its complications: the RAGE signaling pathway. Clin Pharm Therapeut. 2015;98(2):135–44.

    Article  CAS  Google Scholar 

  43. Freidja ML, Tarhouni K, et al. The AGE breaker ALT-711 restores high blood flow dependent remodeling in mesenteric resistance arteries in a rat model of T2DM. Diabetes. 2012;61:1562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt AM. Soluble RAGEs – prospects for treating and tracking metabolic and inflammatory disease. Vasc Pathol. 2015;72:1–8.

    CAS  Google Scholar 

  45. Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44:1973–88.

    Article  CAS  PubMed  Google Scholar 

  46. Fioretto P, Steffes MW, Brown DM, Mauer SM. An overview of renal pathology in insulin dependent diabetes mellitus in relation to altered glomerular hemodynamics. Am J Kidney Dis. 1992;20:549–58.

    Article  CAS  PubMed  Google Scholar 

  47. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58.

    Article  CAS  PubMed  Google Scholar 

  48. Resnick HE, Bardsley J, Foster GL, et al. Achievement of American Diabetes Association clinical practice recommendations among U.S. adults with diabetes 1999–2002. The national health and nutrition examination survey. Diabetes Care. 2006;29:531–7.

    Article  PubMed  Google Scholar 

  49. Devaraj S, Cheung AT, Jialal I, et al. Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes. 2007;56:2790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Yen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Yen, V. (2016). Prevention of Microvascular Complications of Diabetes: General Overview. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20797-1_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20797-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics