Skip to main content

Secondary Causes of Diabetes Mellitus

  • Living reference work entry
  • First Online:
Book cover Principles of Diabetes Mellitus

Abstract

The diabetic syndromes include type 1 diabetes with immune destruction of the pancreatic islets, type 2 diabetes with a complex pathophysiology of insulin resistance combined with insulin secretory failure, distinct monogenetic abnormalities (maturity onset diabetes of the young – MODY), and extreme insulin resistance of several different etiologies. In addition, secondary causes of diabetes mellitus refer to a category in which diabetes is associated with other diseases or conditions related to both the endocrine and exocrine pancreas and other secretory organs of the body. In some instances, diabetes is due to genetic syndrome or use of medicines. Presumably, the diabetes is caused by those conditions or medicines and could be reversed if those conditions were cured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31 Suppl 1:S55–60.

    Article  CAS  Google Scholar 

  2. Pitchumoni CS, Patel NM, Shah P. Factors influencing mortality in acute pancreatitis. J Clin Gastroenterol. 2005;39:798–814.

    Article  CAS  PubMed  Google Scholar 

  3. Thow J, Semad A, Alberti KGMM. Epidemiology and general aspects of diabetes secondary to pancreatopathy. In: Tiengo A, Alberti KGMM, Del Prato S, Vranic M, editors. Diabetes secondary to pancreatopathy. Amsterdam: Excerpta Medica; 1988. p. 7–20.

    Google Scholar 

  4. Del Prato S, Tiengo A. Diabetes secondary to acquired disease of the pancreas. In: Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes mellitus. New York: Wiley; 1992. p. 199.

    Google Scholar 

  5. Ueda T, Takeyama Y, Yasuda T, et al. Simple scoring system for the prediction of the prognosis of severe acute pancreatitis. Surgery. 2007;141:51–8.

    Article  PubMed  Google Scholar 

  6. Drew SI, Joffe B, Vinik AI, et al. The first 24 hours of acute pancreatitis. Changes in biochemical and endocrine homeostasis inpatients with pancreatitis compared to those in control subjects undergoing stress for reasons other than pancreatitis. Am J Med. 1978;64:795–803.

    Article  CAS  PubMed  Google Scholar 

  7. Donowitz M, Hendeler R, Spiro HM, et al. Glucagon secretion in acute and chronic pancreatitis. J Intern Med. 1975;83:778–81.

    CAS  Google Scholar 

  8. Kaya E, Dervisoglu A, Polat C. Evaluation of diagnostic findings and scoring systems in outcome prediction in acute pancreatitis. World J Gastroenterol. 2007;13(22):3090–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersen DK. Mechanisms and emerging treatments of the metabolic complications of chronic pancreatitis. Pancreas. 2007;35(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  10. Mlka D, Hammel P, Sauvanet A, et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology. 2000;119:1324–32.

    Article  Google Scholar 

  11. Angelopoulos N, Dervenis C, Goula A, et al. Endocrine pancreatic insufficiency in chronic pancreatitis. Pancreatology. 2005;5:122–31.

    Article  PubMed  Google Scholar 

  12. Larsen S. Diabetes mellitus secondary to chronic pancreatitis. Dan Med Bull. 1993;40(2):153–62.

    CAS  PubMed  Google Scholar 

  13. Hedetoft C, Sheikh SP, Larsen S, Holst JJ. Effect of glucagons-like peptide 1(7–36)amide in insulin-treated patients with diabetes mellitus secondary to chronic pancreatitis. Pancreas. 2000;20(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  14. Mergener K, Baillie J. Chronic pancreatitis. Lancet. 1997;350:1379–85.

    Article  CAS  PubMed  Google Scholar 

  15. Chari ST, Leibson CL, Rabe KG, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134:95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murat S, Parviz PM. Diabetes and its relationship to pancreatic carcinoma. Pancreas. 2003;26(4):381–7.

    Article  Google Scholar 

  17. Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 2004;89:3629–43.

    Article  CAS  PubMed  Google Scholar 

  18. Casas S, Gomis R, Gribble FM, et al. Impairment of the ubiquitin–proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell apoptosis. Diabetes. 2007;56:2284–94.

    Article  CAS  PubMed  Google Scholar 

  19. Permert J, Larsson J, Fruin AB, et al. Islet hormone secretion in pancreatic cancer patients with diabetes. Pancreas. 1997;15:60–8.

    Article  CAS  PubMed  Google Scholar 

  20. Slezak LA, Andersen DK. Pancreatic resection: effects on glucose metabolism. World J Surg. 2001;25:452–60.

    Article  CAS  PubMed  Google Scholar 

  21. Brennan AL, Geddes DM, Gyi KM, Baker EH. Clinical importance of cystic fibrosis-related diabetes. J Cyst Fibros. 2004;3(4):209–22.

    Article  CAS  PubMed  Google Scholar 

  22. Dobson L, Stride A, Bingham C, et al. Microalbuminuria as a screening tool in cystic fibrosis-related diabetes. Pediatr Pulmonol. 2005;39(2):103–7.

    Article  CAS  PubMed  Google Scholar 

  23. Shwachman H, Kowalski M, Khaw KT. Cystic fibrosis: a new outlook, 70 patients above 25 years of age. Medicine. 1977;56:24–49.

    Article  Google Scholar 

  24. Alves Cde A, Aguiar RA, Alves AC, Santana MA. Diabetes mellitus in patients with cystic fibrosis. J Bras Pneumol. 2007;33(2):213–21.

    Article  PubMed  Google Scholar 

  25. Bizzarri C, Lucidi V, Ciampalini P, et al. Clinical effects of early treatment with insulin glargine in patients with cystic fibrosis and impaired glucose tolerance. J Endocrinol Invest. 2006;29(3):RC1–4.

    Article  CAS  PubMed  Google Scholar 

  26. Williams R, Williams HS, Scheuer PJ, et al. Iron absorption and siderosis in chronic liver disease. Quart J Med. 1967;35:151–66.

    Google Scholar 

  27. Powell LW, Yapp TR. Hemochromatosis. Clin Liver Dis. 2000;4(1):211–28.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson J, Lindquist J, Grambow S, et al. Potential role of increased iron stores in diabetes. Am J Med Sci. 2003;325(6):332–9.

    Article  PubMed  Google Scholar 

  29. Swaminathan S, Fonseca V, Alam M, Shah S. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.

    Article  CAS  PubMed  Google Scholar 

  30. Wermers RA, Fatourechi V, Wynne AG, et al. The glucagonoma syndrome. Medicine. 1996;75:53.

    Article  CAS  PubMed  Google Scholar 

  31. Warner R. Enteroendocrine tumors other than carcinoid: a review of clinically significant advances. Gastroenterology. 2005;128:1668–84.

    Article  PubMed  Google Scholar 

  32. Beek AP, de Haas ERM, van Vloten WA, et al. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol. 2004;151:531–7.

    Article  PubMed  Google Scholar 

  33. Lefgbvre PJ. Glucagon and its family revisited. Diabetes Care. 1995;18:715–30.

    Article  Google Scholar 

  34. Vinik AI, Strodel WE, Eckhauser FE, et al. Somatostatinomas, PPomas, neurotensinomas. Semin Oncol. 1987;14:263–81.

    CAS  PubMed  Google Scholar 

  35. Sassolas G, Chayvialle JA. GRFomas, somatostatinomas: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, editors. Endocrine tumors of the pancreas: recent advances in research and management, Frontiers of Gastrointestinal Research, vol. 23. Basel: S. Karger; 1995. p. 194.

    Google Scholar 

  36. Matuchansky C, Rambuaud JC. VIPomas and endocrine cholera: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, editors. Endocrine tumors of the pancreas: recent advances in research and management, Frontiers of Gastrointestinal Research, vol. 23. Basel: S. Karger; 1995. p. 166.

    Google Scholar 

  37. McCallum RW, Parameswaran V, Burgess JR. Multiple endocrine neoplasia type 1 (MEN 1) is associated with an increased prevalence of diabetes mellitus and impaired fasting glucose. Clin Endocrinol. 2006;65:163–8.

    Article  CAS  Google Scholar 

  38. Feldman JM, Plonk JW, Bivens CH, Levobitz HE. Glucose intolerance in the carcinoid syndrome. Diabetes. 1975;24:664–71.

    Article  CAS  PubMed  Google Scholar 

  39. Mitzner LD, Nohria A, Chacho M, Inzucchi SE. Sequential hypoglycemia, hyperglycemia, and the carcinoid syndrome arising from a plurihormonal neuroendocrine neoplasm. Endocr Pract. 2000;6:370–4.

    Article  CAS  PubMed  Google Scholar 

  40. DeFronzo RA, Ferrannini E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev. 1987;3:415–59.

    Article  CAS  PubMed  Google Scholar 

  41. Zein NN. Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease. J Hepatol. 2000;32:209–17.

    Article  CAS  PubMed  Google Scholar 

  42. Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–43.

    Article  CAS  PubMed  Google Scholar 

  43. Albright ES, Bell DSH. The liver, liver disease, and diabetes mellitus. Endocrinol. 2003;13(1):58–66.

    Article  CAS  Google Scholar 

  44. Cavallo-Perin P, Cassader M, Bozzo C, et al. Mechanism of insulin resistance in human liver cirrhosis: evidence of combined receptor and postreceptor defect. J Clin Invest. 1985;75:1659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harrison SA. Liver disease in patients with diabetes mellitus. J Clin Gastroenterol. 2006;40:68–76.

    Article  PubMed  Google Scholar 

  46. Holstein A, Hinze S, Thiessen E, et al. Clinical implications of hepatogenous diabetes in liver cirrhosis. J Gastroenterol Hepatol. 2002;17(6):677–81.

    Article  PubMed  Google Scholar 

  47. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fartoux L, Poujol-Robert A, Guéchot J, et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005;54(7):1003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hickman IJ, Macdonald GA. Impact of diabetes on the severity of liver disease. Am J Med. 2007;120(10):829–34.

    Article  PubMed  Google Scholar 

  51. Fraser GM, Harman I, Meller N, et al. Diabetes mellitus is associated with chronic hepatitis C but not chronic hepatitis B infection. Isr J Med Sci. 1996;32:526–30.

    CAS  PubMed  Google Scholar 

  52. Knobler H, Schihmanter R, Zifroni A, et al. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355–9.

    Article  CAS  PubMed  Google Scholar 

  53. Huang JF, Dai CY, Hwang SJ, et al. Hepatitis C viremia increases the association with type 2 diabetes mellitus in a hepatitis B and C endemic area: an epidemiological link with virological implication. Am J Gastroenterol. 2007;102(6):1237–43.

    Article  PubMed  Google Scholar 

  54. Mehta SH, Brancati FL, Strathdee SA, et al. Hepatitis C virus infection and incident type 2 diabetes. Hepatology. 2003;38(1):50–6.

    Article  PubMed  Google Scholar 

  55. Zein CO, Levy C, Basu A, Zein NN. Chronic hepatitis C and type II diabetes mellitus: a prospective cross-sectional study. Am J Gastroenterol. 2005;100(1):48–55.

    Article  PubMed  Google Scholar 

  56. Lecube A, Hernández C, Genescà J, Simó R. Glucose abnormalities in patients with hepatitis C virus infection: epidemiology and pathogenesis. Diabetes Care. 2006;29(5):1140–9.

    Article  CAS  PubMed  Google Scholar 

  57. Mehta SH, Brancati FL, Sulkowski MS, et al. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Hepatology. 2001;33(6):1554.

    Article  CAS  PubMed  Google Scholar 

  58. Hadziyannis SJ. The spectrum of extrahepatic manifestations in hepatitis C virus infection. J Vir Hepat. 1997;4:9–28.

    Article  CAS  Google Scholar 

  59. Oben JA, Paulon E. Fatty liver in chronic hepatitis C infection: unraveling the mechanisms. Gut. 2007;56:1186–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knobler H, Schattner A. TNF-alpha, chronic hepatitis C and diabetes: a novel triad. QJM. 2005;98(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  61. Chen LK, Chou YC, Tsai ST, et al. Hepatitis C virus infection-related type 1 diabetes mellitus. Diabet Med. 2005;22(3):340–3.

    Article  PubMed  Google Scholar 

  62. Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165(5):1499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384–92.

    Article  CAS  PubMed  Google Scholar 

  64. Romero-Gómez M, Del Mar VM, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology. 2005;128(3):636–41.

    Article  PubMed  CAS  Google Scholar 

  65. Hickman IJ, Powell EE, Prins JB, et al. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy. J Hepatol. 2003;39(6):1042–8.

    Article  CAS  PubMed  Google Scholar 

  66. Taura N, Ichikawa T, Hamasaki K, et al. Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients. Am J Gastroenterol. 2006;101(12):2752–9.

    Article  CAS  PubMed  Google Scholar 

  67. Trombetta M, Spiazzi G, Zoppini G, Muggeo M. Review article: type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22 Suppl 2:24–7.

    Article  PubMed  Google Scholar 

  68. Negro F, Alaei M. Hepatitis C virus and type 2 diabetes. World J Gastroenterol. 2009;15(13):1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doyle MA, Cooper C. Successful Hepatitis C Antiviral Therapy Induces Remission of Type 2 Diabetes: A Case Report. Am J Case Rep. 2015;16:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Harrison SA, Hamzeh FM, Han J, Pandya PK, Sheikh MY, Vierling JM. Chronic hepatitis C genotype 1 patients with insulin resistance treated with pioglitazone and peginterferon alpha-2a plus ribavirin. Hepatology. 2012;56:464–73.

    Article  CAS  PubMed  Google Scholar 

  71. Premji R, et al. New-onset diabetes mellitus with exposure to Ledipasvir and Sofosbuvir. J Invest Med High Impact Case Rep. 2015;1–2.

    Google Scholar 

  72. Record CO, Alberti KG, Williamson DH, Wright R. Glucose tolerance and metabolic changes in human viral hepatitis. Clin Sci Mol Med. 1973;45:677–90.

    CAS  PubMed  Google Scholar 

  73. Bianchi G, Marchesini G, Zoli M, et al. Prognostic significance of diabetes in patients with cirrhosis. Hepatology. 1994;20:119–25.

    CAS  PubMed  Google Scholar 

  74. Vesely DL, Dilley RW, Duckworth WC, Paustian FF. Hepatitis A-induced diabetes mellitus, acute renal failure, and liver failure. Am J Med Sci. 1999;317(6):419–25.

    Article  CAS  PubMed  Google Scholar 

  75. Masuda H, Atsumi T, Fujisaku A, et al. Acute onset of type 1 diabetes accompanied by acute hepatitis C: the potential role of proinflammatory cytokine in the pathogenesis of autoimmune diabetes. Diabetes Res Clin Pract. 2007;75(3):357–61.

    Article  CAS  PubMed  Google Scholar 

  76. Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001;286(16):1945–8.

    Article  CAS  PubMed  Google Scholar 

  77. Kao WH, Puddey IB, Boland LL, Watson RL, Brancati FL. Alcohol consumption and the risk of type 2 diabetes mellitus: Atherosclerosis Risk in Communities study. Am J Epidemiol. 2001;154:748–57.

    Article  CAS  PubMed  Google Scholar 

  78. Kim SH, et al. Effect of moderate alcohol beverage consumption insulin sensitivity in insulin resistant, nondiabetic individuals. Metabolism. 2009;58(3):387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wicklmayr M, Rett K, Dietze G, Mehnert H. Effects of beta-blocking agents on insulin secretion and glucose disposal. Horm Metab Res Suppl. 1990;22:29–33.

    Article  CAS  PubMed  Google Scholar 

  80. Sarafidis PJ, Bakris GL. Antihypertensive treatment with beta-blockers and the spectrum of glycaemic control. QJM:An Int J Med. 2006;99(7):432–6.

    Article  Google Scholar 

  81. Lambertus MW, Murthy AR, Nagami P, et al. Diabetic ketoacidosis following pentamidine therapy in a patient with the acquired immunodeficiency syndrome. West J Med. 1988;149:602–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bouchard P, Sai P, Reach G, et al. Diabetes mellitus following pentamidine-induced hypoglycemia in humans. Diabetes. 1982;31:40–5.

    Article  CAS  PubMed  Google Scholar 

  83. Assan R, Perronne C, Assan D, et al. Pentamidine-induced derangements of glucose homeostasis. Diabetes Care. 1995;18:47–55.

    Article  CAS  PubMed  Google Scholar 

  84. Pandit MK, Burke J, Gustafson AB, et al. Drug-induced disorders of glucose tolerance. Ann Intern Med. 1993;118:529–40.

    Article  CAS  PubMed  Google Scholar 

  85. O’Byrne S, Feely J. Effects of drugs on glucose tolerance in non-insulin-dependent diabetes (parts I and II). Drugs. 1990;40:203–19.

    Article  PubMed  Google Scholar 

  86. Shiba T, Morino Y, Tagawa K, et al. Onset of diabetes with high titer anti-GAD antibody after IFN therapy for chronic hepatitis. Diabetes Res Clin Pract. 1996;30:237–41.

    Article  Google Scholar 

  87. Gallanosa AG, Spyker DA, Curnow RT. Diabetes mellitus associated with autonomic and peripheral neuropathy after Vacor poisoning: a review. Clin Toxicol. 1981;18:441–9.

    Article  CAS  PubMed  Google Scholar 

  88. Florescu D, Kotler DP. Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther. 2007;12:149–62.

    CAS  PubMed  Google Scholar 

  89. Moyle G. Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr. 2007;45:S19–26.

    Article  CAS  PubMed  Google Scholar 

  90. Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357:592–8.

    Article  CAS  PubMed  Google Scholar 

  91. Liang J, Distler O, Cooper DA, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med. 2001;7:1327–31.

    Article  CAS  PubMed  Google Scholar 

  92. Riddle TM, Kuhel DG, Woollett LA, et al. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem. 2001;276:37514–9.

    Article  CAS  PubMed  Google Scholar 

  93. Martine C, Auclair M, Vigouroux C, et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50:1378–88.

    Article  Google Scholar 

  94. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275:20251–4.

    Article  CAS  PubMed  Google Scholar 

  95. American Diabetes Association. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.

    Article  CAS  Google Scholar 

  96. Cederberg H, Stancakova A, Yaluri N, Modi S, Kuusisto J, Laakso M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetilogia. 2015;58:1109–17.

    Article  CAS  Google Scholar 

  97. Mikkelsen KH, Knop FK, Frost M, Hallas J, Pottgard A. Use of antibiotics and risk of type 2 diabetes: a population-based case–control study. J Clin Endocrinol Metab. 2015;100(10):3633–3640.

    Google Scholar 

  98. Thuny F, Richet H, Casalta J-P, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5(2), e9074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23.

    Article  CAS  Google Scholar 

  100. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;168(11):1063–9.

    Article  PubMed  Google Scholar 

  101. Carvalho BM, Guadagnini D, Tsukumo DML, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–34.

    Article  CAS  PubMed  Google Scholar 

  102. Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerant in mice. FASEB J. 2001;22(7):2416–26.

    Article  CAS  Google Scholar 

  103. Butler AA, LeRoith D. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology. 2001;142:1685–8.

    Article  CAS  PubMed  Google Scholar 

  104. Usala AL, Madigan T, Burguera B, et al. Treatment of insulin-resistant diabetic ketoacidosis with insulin-like growth factor I in an adolescent with insulin-dependent diabetes [Brief report]. N Engl J Med. 1992;327:853–7.

    Article  CAS  PubMed  Google Scholar 

  105. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.

    Article  CAS  PubMed  Google Scholar 

  106. Leung KC, Ho KKY. Stimulation of mitochondrial fatty acid oxidation by growth hormone in human fibroblasts. J Clin Endocrinol Metab. 1997;82:4208–13.

    CAS  PubMed  Google Scholar 

  107. Goodman HN. The metabolic actions of growth hormone. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 849–906.

    Google Scholar 

  108. Vilar L, Naves LA, Costa SS, et al. Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract. 2007;13:363–72.

    Article  PubMed  Google Scholar 

  109. Munck A, Naray-Fejes-Toth A. Glucocorticoid physiology. In: DeGroot LJ, Jameson LJ, editors. Endocrinology. 5th ed. Philadelphia: Elsevier Saunders; 2006. p. 2287–309.

    Google Scholar 

  110. Salati LM. Regulation of fatty acid biosynthesis and lipolysis. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 495–527.

    Google Scholar 

  111. Jefferson LS, Vary TC, Kimball SR. Regulation of protein metabolism in muscle. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 536.

    Google Scholar 

  112. Gura T. Pot-bellied mice point to obesity enzyme [News of the Week]. Science. 2001;294:2071–2.

    Article  CAS  PubMed  Google Scholar 

  113. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.

    Article  CAS  PubMed  Google Scholar 

  114. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21:1443–55.

    Article  CAS  PubMed  Google Scholar 

  115. Manger WM, Gifford RW. Clinical and experimental pheochromocytoma. 2nd ed. Cambridge: Blackwell Science, Inc.; 1996. p. 209.

    Google Scholar 

  116. Cryer PE. Catecholamines, pheochromocytoma and diabetes. Diabet Rev. 1993;1:309–17.

    Google Scholar 

  117. Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92(11):4069–79.

    Article  CAS  PubMed  Google Scholar 

  118. Romero R, Casanova B, Pulido N, et al. Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter proteins. J Endocrinol. 2000;164:187–95.

    Article  CAS  PubMed  Google Scholar 

  119. Tosi F, Moghetti P, Castello R, et al. Early changes in plasma glucagon and growth hormone response to oral glucose in experimental hyperthyroidism. Metab Clin Exp. 1996;45:1029–33.

    Article  CAS  PubMed  Google Scholar 

  120. Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000;14(7):947–55.

    Article  CAS  PubMed  Google Scholar 

  121. Mokuno T, Uchimura K, Hayashi R, et al. Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers. J Endocrinol. 1999;160:285–9.

    Article  CAS  PubMed  Google Scholar 

  122. Kreze Sr A, Kreze-Spirova E, Mikulecky M. Diabetes mellitus in primary aldosteronism. Bratisl Lek Listy. 2000;101:187–90.

    PubMed  Google Scholar 

  123. Ferrannini E, Galvan AQ, Santoro D, Natali A. Potassium as a link between insulin and the rennin–angiotensin–aldosterone system. J Hypertens. 1992;10 Suppl 1:S5–S10.

    Article  CAS  Google Scholar 

  124. Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension. 2007;50:750–5.

    Article  CAS  PubMed  Google Scholar 

  125. Strauch B, Widimsky J, Sindelka G, Skrha J. Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiol Res. 2003;52(4):503–6.

    CAS  PubMed  Google Scholar 

Useful Websites

Download references

Acknowledgment

We hereby acknowledge and sincerely thank Dr. Adrienne M. Fleckman without whose guidance, leadership, and support this chapter would not have been written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh S. Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pareek, A.S., Garger, Y.B., Joshi, P.M., Romero, C.M., Seth, A.K. (2016). Secondary Causes of Diabetes Mellitus. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20797-1_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20797-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics