Skip to main content

Evolution of the Magnetic Field of Neutron Stars

  • Living reference work entry
  • First Online:
  • 269 Accesses

Abstract

The evolution of the magnetic field of neutron stars has been one of the open questions in astrophysics since the first pulsar was discovered in 1967. In this chapter, we present an overview of the research into the measures, observations, and models of the magnetic fields of neutron stars. It is usually thought that the magnetic fields of isolated pulsars should keep their original values or that the magnetic field of a neutron star in a binary star decays in the accretion phase but has no significant decay after the accretion stops. The recycled pulsar in a double neutron star system has accreted about 0.01–0.1 M , therefore its field decays to 109−10 G. However, a millisecond pulsar has accreted 0.1–0.2 M , producing a field of about 107. 5−9 G, which is almost the minimum value of the magnetic fields of neutron stars. The magnetic structure of a millisecond pulsar must deviate from a simple magnetic dipole. The matter accreting onto a neutron star dilutes its polar field lines and causes these field lines to be trapped in the crust of the extrapolar region, which could result in a local superstrong magnetic component of about 1014 G.

This is a preview of subscription content, log in via an institution.

References

  • Alpar MA, Cheng AF, Ruderman MA, Shaham J (1982) A new class of radio pulsars. Nature 300:728

    Article  ADS  Google Scholar 

  • Bhattacharya D, van den Heuvel EPJ (1991) Formation and evolution of binary and millisecond radio pulsars. Phys Rep 203:1

    Article  ADS  Google Scholar 

  • Blandford RD et al (1983) Thermal origin of neutron star magnetic fields. MNRAS 204:1025

    Article  ADS  Google Scholar 

  • Blondin JM, Freese K (1986) Is the 1.5-ms pulsar a young neutron star? Nature 323:786

    Google Scholar 

  • Braithwaite J, Spruit HC (2004) A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431:819

    Article  ADS  Google Scholar 

  • Burderi L, Di Salvo T (2013) On low mass X-ray binaries and millisecond pulsar. MmSAI 84:117

    ADS  Google Scholar 

  • Caballero I, Wilms J (2012) X-ray pulsars: a review. MmSAI 83:230

    ADS  Google Scholar 

  • Camilo F, Thorsett SE, Kulkarni SR (1994) The magnetic fields, ages, and original spin periods of millisecond pulsars. ApJ 421:L15

    Article  ADS  Google Scholar 

  • Coburn W, Heindl WA, Gruber DE et al (2001) Discovery of a cyclotron resonant scattering feature in the Rossi X-ray timing explorer spectrum of 4U 0352+309 (X Persei). ApJ 552:738

    Article  ADS  Google Scholar 

  • Cumming A (2004, to appear) Magnetic field evolution during neutron star recycling. In: Rasio FA, Stairs IH (eds) Binary radio pulsars, Aspen. ASP conference series. astro-ph/0404518

    Google Scholar 

  • Cumming A et al (2001) Magnetic screening in accreting neutron stars. ApJ 557:958

    Article  ADS  Google Scholar 

  • Frank J, King A, Raine DJ (2002) Accretion power in astrophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Geppert U, Urpin V (1994) Accretion-driven magnetic field decay in neutron stars. MNRAS 271:490

    Article  ADS  Google Scholar 

  • Ghosh P, Lamb FK (1979) Accretion by rotating magnetic neutron stars. III-accretion torques and period changes in pulsating X-ray sources. ApJ 234:296

    Google Scholar 

  • Konar S, Choudhury A (2004) Diamagnetic screening of the magnetic field in accreting neutron stars – II. The effect of polar cap widening. MNRAS 348:661

    Google Scholar 

  • Kulkarni SR (1986) Optical identification of binary pulsars – implications for magnetic field decay in neutron stars. ApJ 306:L85

    Article  ADS  Google Scholar 

  • Lamb FK, Yu W (2005) Spin rates and magnetic fields of millisecond pulsars. In: Rasio FA, Stairs IH (eds) Binary radio pulsars, Aspen. ASP conference series, vol 328, n 299

    Google Scholar 

  • Lorimer DR (2008) Living reviews of relativity, vol 11, no 8. http://relativity.livingreviews.org/Articles/lrr-2008-8/

  • Lovelace RV, Romanova MM, Bisnovatyi-Kogan GS (2005) Screening of the magnetic field of disk accreting stars. ApJ 625:957. astro-ph/0508168

    Google Scholar 

  • Lyne AG et al (2004) A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303:1153

    Article  ADS  Google Scholar 

  • Makishima K et al (1999) Cyclotron resonance effects in two binary X-ray pulsars and the evolution of neutron star magnetic fields. ApJ 525:978

    Article  ADS  Google Scholar 

  • Manchester RN, Hobbs GB, Teoh A, Hobbs M (2005) The Australia telescope national facility pulsar catalogue. AJ 129:4

    Article  Google Scholar 

  • Melatos A, Phinney ES (2001) Hydromagnetic structure of a neutron star accreting at its polar caps. Publ Astron Soc Aust 18:421

    Article  ADS  Google Scholar 

  • Pan YY, Wang N, Zhang CM (2013) Binary pulsars in magnetic field versus spin period diagram. Ap&SS 346:119

    Article  ADS  Google Scholar 

  • Pan YY, Song LM, Zhang CM, Guo YQ (2015) The simulation of the magnetic field and spin period evolution of accreting neutron stars. Astron Nachr 336:370

    Article  ADS  Google Scholar 

  • Papitto A, Torres DF, Rea N, Tauris T (2014) Spin frequency distributions of binary millisecond pulsars. A&A 566:64

    Article  ADS  Google Scholar 

  • Payne D, Melatos A (2004) Burial of the polar magnetic field of an accreting neutron star-I. Self-consistent analytic and numerical equilibria. MNRAS 351:569

    Google Scholar 

  • Phinney ES, Kulkarni SR (1994) Binary and millisecond pulsars. ARA&A 32:591

    Article  ADS  Google Scholar 

  • Ruderman M (2010) Causes and consequences of magnetic field changes in neutron stars. NewAR 54:110

    Article  ADS  Google Scholar 

  • Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs and neutron stars. Wiley, New York

    Book  Google Scholar 

  • Shibazaki N, Murakami T, Shaham J, Nomoto K (1989) A unified model of neutron-star magnetic fields. Nature 342:656–658

    Article  ADS  Google Scholar 

  • Taam RE, van den Heuvel EPJ (1986) ApJ 305:235

    Article  ADS  Google Scholar 

  • Tauris TM (2015) Millisecond pulsars in close binaries. arXiv:1501.03882

    Google Scholar 

  • Tauris TM, Langer N, Kramer M (2012) MNRAS 425:1601

    Article  ADS  Google Scholar 

  • Thompson C, Duncan R (1993) ApJ 408:194

    Article  ADS  Google Scholar 

  • Truemper J et al (1978) ApJ 219L:105

    Article  ADS  Google Scholar 

  • van den Heuvel EPJ (2004) Science 303:1143

    Article  Google Scholar 

  • Wijnands R, van der Klis M (1998) Nature 394:344

    Article  ADS  Google Scholar 

  • Zhang CM (2004) A&A 423:401

    Article  ADS  Google Scholar 

  • Zhang CM, Kojima Y (2006) MNRAS 366:137

    Article  ADS  Google Scholar 

  • Zhang CM et al (2011) A&A 527:83

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 11173034) and the National Basic Research Program of China (2012CB821800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Zhang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Zhang, C.M.Z. (2016). Evolution of the Magnetic Field of Neutron Stars. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics