Skip to main content

Evolution of Accreting White Dwarfs to the Thermonuclear Runaway

  • Living reference work entry
  • First Online:
  • 383 Accesses

Abstract

The two suggestions for the stars that explode as a supernova of type Ia are the single degenerate scenario and the double degenerate scenario. In the SD scenario, a white dwarf in a binary system accretes material from its companion and grows to the Chandrasekhar limit. Although there is no agreement on the progenitors, likely systems are the cataclysmic variables and symbiotic binaries which are close (or not so close) binary star systems which contain both a white dwarf (WD) primary and a larger cooler secondary star that typically fills its Roche lobe. The cooler star is losing mass through the inner Lagrangian point of the binary, and a fraction of this material is accreted by the WD. In this chapter, I investigate the consequences to the WD evolution of no mixing of accreted material with core material. The results are that once sufficient material has been accreted, thermonuclear burning is initiated and continues until a thermonuclear runaway occurs. The consequences of a thermonuclear runaway in solar composition material are that the WD ejects only a small fraction of the accreted material and, therefore, the WDs are growing in mass.

This is a preview of subscription content, log in via an institution.

References

  • Alexakis A, Calder AC, Heger A, Brown EF, Dursi LJ, Truran JW, Rosner R, Lamb DQ, Timmes FX, Fryxell B, Zingale M, Ricker PM, Olson K (2004) On heavy element enrichment in classical Novae. ApJ 602:931–937. arXiv:astro-ph/0307126

    Google Scholar 

  • Arnett D, Meakin C, Young PA (2010) Convection theory and sub-photospheric stratification. ApJ 710:1619–1626. doi:10.1088/0004-637X/710/2/1619, arXiv:0910.0821

    Google Scholar 

  • Branch D, Livio M, Yungelson LR, Boffi FR, Baron E (1995) In search of the progenitors of Type Ia Supernovae. PASP 107:1019–+. doi:10.1086/133657

    Google Scholar 

  • Casanova J, José J, García-Berro E, Calder A, Shore SN (2010) On mixing at the core-envelope interface during classical nova outbursts. A&A 513:L5+. doi:10.1051/0004-6361/201014178, arXiv:1004.2792

    Google Scholar 

  • Casanova J, José J, García-Berro E, Calder A, Shore SN (2011a) Mixing in classical novae: a 2-D sensitivity study. A&A 527:A5. doi:10.1051/0004-6361/201015895, arXiv:1012.3199

    Google Scholar 

  • Casanova J, José J, García-Berro E, Shore SN, Calder AC (2011b) Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions. Nature 478:490–492. doi:10.1038/nature10520

    Article  ADS  Google Scholar 

  • Casanova J, Jose J, Garcia-Berro E, Shore SN (2016) Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions. arXiv:1606.08734

    Google Scholar 

  • Cassisi S, Potekhin AY, Pietrinferni A, Catelan M, Salaris M (2007) Updated electron-conduction opacities: the impact on low-mass stellar models. ApJ 661:1094–1104. arXiv:astro-ph/0703011

    Google Scholar 

  • Copperwheat CM, Marsh TR, Dhillon VS, Littlefair SP, Hickman R, Gänsicke BT, Southworth J (2010) Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf. Mon Not R Astron Soc 402:1824–1840. doi:10.1111/j.1365-2966.2009.16010.x, arXiv:0911.1637

    Google Scholar 

  • Darnley MJ, Henze M, Bode MF, Hachisu I, Hernanz M, Hornoch K, Hounsell R, Kato M, Ness JU, Osborne JP, Page KL, Ribeiro VARM, Rodriguez-Gil P, Shafter AW, Shara MM, Steele IA, Williams SC, Arai A, Arcavi I, Barsukova EA, Boumis P, Chen T, Fabrika S, Figueira J, Gehrels N, Godon P, Goranskij VP, Harman DJ, Hartmann DH, Hosseinzadeh G, Horst JC, Itagaki K, Jose J, Kabashima F, Kaur A, Kawai N, Kennea JA, Kiyota S, Kucakova H, Lau KM, Maehara H, Naito H, Nakajima K, Nishiyama K, O’Brien TJ, Quimby R, Sala G, Sano Y, Sion EM, Valeev AF, Watanabe F, Watanabe M, Williams BF, Xu Z (2016) M31N 2008-12a – the remarkable recurrent nova in M31: Pan-Chromatic observations of the 2015 eruption. eprint ArXiv -160708082 (1607.08082). arXiv:1607.08082

    Google Scholar 

  • Dilday B, Howell DA, Cenko SB, Silverman JM, Nugent PE, Sullivan M, Ben-Ami S, Bildsten L, Bolte M, Endl M, Filippenko AV, Gnat O, Horesh A, Hsiao E, Kasliwal MM, Kirkman D, Maguire K, Marcy GW, Moore K, Pan Y, Parrent JT, Podsiadlowski P, Quimby RM, Sternberg A, Suzuki N, Tytler DR, Xu D, Bloom JS, Gal-Yam A, Hook IM, Kulkarni SR, Law NM, Ofek EO, Polishook D, Poznanski D (2012) PTF 11kx: a Type Ia Supernova with a symbiotic nova progenitor. Science 337:942–. doi:10.1126/science.1219164, arXiv:1207.1306

    Google Scholar 

  • Echevarría J, de la Fuente E, Costero R (2007) U Geminorum: a test case for orbital parameter determination. AJ 134:262–273. doi:10.1086/518562, arXiv:0704.1641

    Google Scholar 

  • Ferguson JW, Alexander DR, Allard F, Barman T, Bodnarik JG, Hauschildt PH, Heffner-Wong A, Tamanai A (2005) Low-temperature opacities. ApJ 623:585–596. doi:10.1086/428642, arXiv:astro-ph/0502045

    Google Scholar 

  • Fujimoto MY (1982a) A theory of hydrogen shell flashes on accreting white dwarfs – part two – the stable shell burning and the recurrence period of shell flashes. ApJ 257:767. doi:10.1086/160030

    Article  ADS  Google Scholar 

  • Fujimoto MY (1982b) A theory of hydrogen shell flashes on accreting white dwarfs. I – their progress and the expansion of the envelope. II – the stable shell burning and the recurrence period of shell flashes. ApJ 257:752–779. doi:10.1086/160029

    Google Scholar 

  • Glasner SA, Livne E, Truran JW (1997) Reactive flow in nova outbursts. ApJ 475:754–+

    Google Scholar 

  • Glasner SA, Livne E, Truran JW (2007) Novae: the evolution from onset of convection to the runaway. ApJ 665:1321–1333

    Article  ADS  Google Scholar 

  • Han Z, Podsiadlowski P (2004) The single-degenerate channel for the progenitors of Type Ia supernovae. Mon Not R Astron Soc 350:1301–1309. arXiv:astro-ph/0309618

    Google Scholar 

  • Han Z, Podsiadlowski P (2006) A single-degenerate model for the progenitor of the Type Ia supernova 2002ic. Mon Not R Astron Soc 368:1095–1100. doi:10.1111/j.1365-2966.2006.10185.x, arXiv:astro-ph/0602229

    Google Scholar 

  • Hansen CJ, Kawaler SD, Trimble V (2004) Stellar interiors: physical principles, structure, and evolution. Springer, New York

    Book  Google Scholar 

  • Henze M, Darnley MJ, Kabashima F, Nishiyama K, Itagaki K, Gao X (2015) A remarkable recurrent nova in M 31: the 2010 eruption recovered and evidence of a six-month period. A&A 582:L8. doi:10.1051/0004-6361/201527168, arXiv:1508.06205

    Google Scholar 

  • Hillebrandt W, Leibundgut B (eds) (2003) From twilight to highlight: the physics of supernovae: proceedings of the ESO/MPA/MPE workshop held at Garching, 29–31 July 2002. doi:10.1007/b80349

    Google Scholar 

  • Hillebrandt W, Niemeyer JC (2000) Type IA supernova explosion models. ARAA 38:191–230. arXiv:astro-ph/0006305

    Google Scholar 

  • Hix WR, Thielemann FK (1999) Silicon burning. II. Quasi-equilibrium and explosive burning. ApJ 511:862–875. doi:10.1086/306692, arXiv:astro-ph/9808203

    Google Scholar 

  • Howell DA (2010) Supernovae: a smashing success. Nature 463:35–36. doi:10.1038/463035a

    Article  ADS  Google Scholar 

  • Howell DA (2011) Type Ia supernovae as stellar endpoints and cosmological tools. Nature Commun 2:350. doi:10.1038/ncomms1344, arXiv:1011.0441

    Google Scholar 

  • Howell DA, Conley A, Della Valle M, Nugent PE, Perlmutter S, Marion GH, Krisciunas K, Badenes C, Mazzali P, Aldering G, Antilogus P, Baron E, Becker A, Baltay C, Benetti S, Blondin S, Branch D, Brown EF, Deustua S, Ealet A, Ellis RS, Fouchez D, Freedman W, Gal-Yam A, Jha S, Kasen D, Kessler R, Kim AG, Leonard DC, Li W, Livio M, Maoz D, Mannucci F, Matheson T, Neill JD, Nomoto K, Panagia N, Perrett K, Phillips M, Poznanski D, Quimby R, Rest A, Riess A, Sako M, Soderberg AM, Strolger L, Thomas R, Turatto M, van Dyk S, Wood-Vasey WM (2009) Type Ia supernova science 2010–2020. ArXiv e-prints: white paper submitted to the Astro 2010 Decadel Survey. arXiv:0903.1086

    Google Scholar 

  • Iben I Jr (2013a) Stellar evolution physics, volume 1: physical processes in stellar interiors, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Iben I Jr (2013b) Stellar evolution physics, volume 2: advanced evolution of single stars, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Iglesias CA, Rogers FJ (1996) Updated opal opacities. ApJ 464:943–+

    Google Scholar 

  • José J (2014) Multidimensional modeling of nova outbursts. In: Woudt PA, Ribeiro VARM (eds) Stella novae: past and future decades. Astronomical Society of the Pacific conference series: San Francisco, California, vol 490, p 275

    Google Scholar 

  • José J, Hernanz M (1998) Nucleosynthesis in classical novae: CO versus ONe white dwarfs. ApJ 494:680–690. doi:10.1086/305244, arXiv:astro-ph/9709153

    Google Scholar 

  • José J, Casanova J, García-Berro E, Hernanz M, Shore SN, Calder AC (2013) Classical and recurrent nova models. In: Di Stefano R, Orio M, Moe M (eds) IAU symposium, vol 281, pp 80–87. doi:10.1017/S1743921312014743

    Google Scholar 

  • Kahabka P, van den Heuvel EPJ (1997) Luminous supersoft X-Ray sources. ARAA 35:69–100. doi:10.1146/annurev.astro.35.1.69

    Article  ADS  Google Scholar 

  • Kasen D, Röpke FK, Woosley SE (2009) The diversity of type ia supernovae from broken symmetries. Nature 460(7257):869–872. http://dx.doi.org/10.1038/nature08256

    Article  ADS  Google Scholar 

  • Kercek A, Hillebrandt W, Truran JW (1998) Two-dimensional simulations of the thermonuclear runaway in an accreted atmosphere of a C+O white dwarf. A&A 337:379–392. arXiv:astro-ph/9801054

    Google Scholar 

  • Khokhlov AM (1991) Delayed detonation model for type IA supernovae. A&A 245:114–128

    ADS  Google Scholar 

  • Kippenhahn R, Weigert A, Weiss A (2012) Stellar structure and evolution. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-30304-3

    ADS  MATH  Google Scholar 

  • Kovetz A, Prialnik D (1985) CNO abundances resulting from diffusion in accreting nova progenitors. ApJ 291:812–821. doi:10.1086/163117

    Article  ADS  Google Scholar 

  • Kutter GS, Sparks WM (1987) Stellar accretion of matter possessing angular momentum. ApJ 321:386–393. doi:10.1086/165637

    Article  ADS  Google Scholar 

  • Leibundgut B (2000) Type Ia supernovae. Astr Astrophys Rev 10:179–209. doi:10.1007/s001590000009, arXiv:astro-ph/0003326

    Google Scholar 

  • Leibundgut B (2001) Cosmological implications from observations of Type Ia supernovae. ARAA 39:67–98

    Article  ADS  MATH  Google Scholar 

  • Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of Type Ia supernovae. ARAA 52:107–170. doi:10.1146/annurev-astro-082812-141031, arXiv:1312.0628

    Google Scholar 

  • Nomoto K, Uenishi T, Kobayashi C, Umeda H, Ohkubo T, Hachisu I, Kato M (2003) Type Ia supernovae: progenitors and diversities. In: Hillebrandt W, Leibundgut B (eds) From twilight to highlight: the physics of Supernovae, Springer Berlin Heidelberg, pp 115–+

    Google Scholar 

  • Papaloizou JCB, Pringle JE, MacDonald J (1982) Steady nuclear burning on white dwarfs. Mon Not R Astron Soc 198:215–220. doi:10.1093/mnras/198.1.215

    Article  ADS  Google Scholar 

  • Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for experiments in stellar astrophysics (MESA). ApJS 192:3–+. doi:10.1088/0067-0049/192/1/3, arXiv:1009.1622

    Google Scholar 

  • Paxton B, Cantiello M, Arras P, Bildsten L, Brown EF, Dotter A, Mankovich C, Montgomery MH, Stello D, Timmes FX, Townsend R (2013) Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. ApJS 208:4. doi:10.1088/0067-0049/208/1/4, arXiv:1301.0319

    Google Scholar 

  • Paxton B, Marchant P, Schwab J, Bauer EB, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend RHD, Townsley DM, Timmes FX (2015) Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. ApJS 220:15. doi:10.1088/0067-0049/220/1/15, arXiv:1506.03146

    Google Scholar 

  • Potekhin AY, Chabrier G (2010) Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib Plasma Phy 50:82–87. doi:10.1002/ctpp.201010017, arXiv:1001.0690

    Google Scholar 

  • Prialnik D (2009) An introduction to the theory of stellar structure and evolution, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Prialnik D, Kovetz A (1984) The effect of diffusion on prenova evolution – CNO-enriched envelopes. ApJ 281:367–374. doi:10.1086/162107

    Article  ADS  Google Scholar 

  • Prialnik D, Livio M, Shaviv G, Kovetz A (1982) On the role of the accretion rate in nova outbursts. ApJ 257:312–317. doi:10.1086/159990

    Article  ADS  Google Scholar 

  • Rogers FJ, Nayfonov A (2002) Updated and expanded OPAL equation-of-state tables: implications for helioseismology. ApJ 576:1064–1074

    Article  ADS  Google Scholar 

  • Rosner R, Alexakis A, Young YN, Truran JW, Hillebrandt W (2001) On the C/O enrichment of nova ejecta. ApJ Lett 562:L177–L179. arXiv:astro-ph/0110684

    Google Scholar 

  • Ruiz-Lapuente P (2014) New approaches to SNe Ia progenitors. New Astron Rev 62:15–31. doi:10.1016/j.newar.2014.08.002, arXiv:1403.4087

    Google Scholar 

  • Saumon D, Chabrier G, van Horn HM (1995) An equation of state for low-mass stars and giant planets. ApJS 99:713–+. doi:10.1086/192204

    Google Scholar 

  • Schwarzschild M, Härm R (1965) Thermal instability in non-degenerate stars. ApJ 142:855. doi:10.1086/148358

    Article  ADS  Google Scholar 

  • Shafter AW (1983) On the masses of white dwarfs in cataclysmic binaries. PhD thesis, California University, Los Angeles

    Google Scholar 

  • Shaviv NJ (2002) Classical Novae as super-Eddington objects. In: Hernanz M, José J (eds) Classical nova explosions. American institute of physics conference series, vol 637, pp 259–265. doi:10.1063/1.1518210, arXiv:astro-ph/0207639

    Google Scholar 

  • Sion EM, Godon P, Myzcka J, Blair WP (2010) The accreting white dwarf in SS cygni revealed. ApJ Lett 716:L157–L160. doi:10.1088/2041-8205/716/2/L157, arXiv:1007.3158

    Google Scholar 

  • Sparks WM, Kutter GS (1987) Nuclear runaways in a C/O white dwarf accreting H-rich material possessing angular momentum. ApJ 321:394–403. doi:10.1086/165638

    Article  ADS  Google Scholar 

  • Starrfield S, Illiadis C, Hix WR (2008) Thermonuclear processes. In: Bode MF, Evans A (eds) Classical novae. Cambridge University Press, Cambridge/New York, pp 77–101

    Chapter  Google Scholar 

  • Starrfield S, Iliadis C, Hix WR, Timmes FX, Sparks WM (2009) The effects of the pep nuclear reaction and other improvements in the nuclear reaction rate library on simulations of the classical nova outburst. ApJ 692:1532–1542. doi:10.1088/0004-637X/692/2/1532, arXiv:0811.0197

    Google Scholar 

  • Starrfield S, Iliadis C, Hix WR (2016) The thermonuclear runaway and the classical nova outburst. PASP 128(5):051,001. doi:10.1088/1538-3873/128/963/051001

    Article  Google Scholar 

  • Timmes FX, Arnett D (1999) The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. ApJS 125:277–294

    Article  ADS  Google Scholar 

  • Timmes FX, Swesty FD (2000) The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. ApJS 126:501–516

    Article  ADS  Google Scholar 

  • Weiss A, Hillebrandt W, Thomas HC, Ritter H (2004) Cox and Giuli’s principles of stellar structure. Cambridge Scientific Publishers: Paperback, Cambridge, UK

    Google Scholar 

  • Woosley SE, Kasen D (2011) Sub-Chandrasekhar mass models for supernovae. ApJ 734:38. doi:10.1088/0004-637X/734/1/38, arXiv:1010.5292

    Google Scholar 

  • Yaron O, Prialnik D, Shara MM, Kovetz A (2005) An extended grid of nova models. II. The parameter space of nova outbursts. ApJ 623:398–410. doi:10.1086/428435, arXiv:astro-ph/0503143

    Google Scholar 

  • Yoon SC, Langer N, van der Sluys M (2004) On the stability of thermonuclear shell sources in stars. A&A 425:207–216. doi:10.1051/0004-6361:20040231, arXiv:astro-ph/0406164

    Google Scholar 

  • Zorotovic M, Schreiber MR, Gänsicke BT (2011) Post common envelope binaries from SDSS. XI. The white dwarf mass distributions of CVs and pre-CVs. A&A 536:A42. doi:10.1051/0004-6361/201116626, arXiv:1108.4600

    Google Scholar 

Download references

Acknowledgements

I thank Peter Hoeflich for asking me to do this chapter and for his comments on an initial draft. I am also grateful to a number of collaborators over the years who have contributed to this material. I have benefited from discussions with R. D. Gehrz, W. R. Hix, C. Iliadis, J. Krautter, F. X. Timmes, G. Newsham (who did the calculations with MESA as a postdoc at ASU), S. N. Shore, E. M. Sion, W. M. Sparks, R. M. Wagner, and C. E. Woodward. I acknowledge partial support from NSF grant AST10-07977 to Arizona State University. I am also happy to acknowledge partial support from other NSF and NASA grants to Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumner Starrfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Starrfield, S. (2016). Evolution of Accreting White Dwarfs to the Thermonuclear Runaway. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics