Skip to main content

Neutron Star Matter Equation of State

  • Living reference work entry
  • First Online:
  • 431 Accesses

Abstract

Neutron stars are highly compact objects with masses comparable to that of our Sun but radii of only about 10 km. The structure of neutron stars is encapsulated in the Tolman-Oppenheimer-Volkoff (TOV) equations, which represent the generalization of Newtonian gravity to the domain of general relativity. Remarkably, the only input required to solve the TOV equations is the equation of state of cold, neutron-rich matter in chemical equilibrium. In this contribution we derive analytic expressions for the equation of state of an electrically neutral, relativistic free Fermi gas of neutrons, protons, and electrons in chemical equilibrium. Then, we introduce simple “scaling” concepts to rewrite the TOV equations in a form amenable to standard numerical algorithms. Finally, we highlight the ongoing synergy between astrophysics and nuclear physics that will need to be maintained, and indeed enhanced, to elucidate some of the most fascinating and challenging problems associated with the structure, dynamics, and composition of neutron stars.

This is a preview of subscription content, log in via an institution.

References

  • Antoniadis J, Freire PC, Wex N, Tauris TM, Lynch RS et al (2013) A massive pulsar in a compact relativistic binary. Science 340:6131

    Article  ADS  Google Scholar 

  • Baade W, Zwicky F (1934) In minutes of the stanford meeting, proceedings of the american physical society, december 15–16, 1933. Phys Rev 45:138

    Google Scholar 

  • Bertulani C, Piekarewicz J (2012) Neutron star crust. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Brown BA (2000) Neutron radii in nuclei and the neutron equation of state. Phys Rev Lett 85:5296

    Article  ADS  Google Scholar 

  • Chadwick J (1932) Possible existence of a neutron. Nature 129:312

    Article  ADS  Google Scholar 

  • Chandrasekhar S (1931) The maximum mass of ideal white dwarfs. Astrophys J 74:81

    Article  ADS  MATH  Google Scholar 

  • Chen W-C, Piekarewicz J (2015) Compactness of neutron stars. Phys Rev Lett 115(16):161101

    Article  ADS  Google Scholar 

  • Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J (2010) Shapiro delay measurement of a two solar mass neutron star. Nature 467:1081

    Article  ADS  Google Scholar 

  • Ducoin C, Margueron J, Providencia C (2010) Nuclear symmetry energy and core-crust transition in neutron stars: a critical study. Europhys Lett 91:32001

    Article  ADS  Google Scholar 

  • Einstein A (1915) Die feldgleichungen der gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, p 844

    MATH  Google Scholar 

  • Fattoyev FJ, Piekarewicz J (2010) Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter. Phys Rev C82:025810

    ADS  Google Scholar 

  • Gandolfi S, Carlson J, Reddy S, Steiner A, Wiringa R (2014) The equation of state of neutron matter, symmetry energy, and neutron star structure. Eur Phys J A50:10

    Article  ADS  Google Scholar 

  • Guillot S, Rutledge RE (2014) Rejecting proposed dense-matter equations of state with quiescent low-mass X-ray binaries. Astrophys J 796(1):L3

    Article  ADS  Google Scholar 

  • Guillot S, Servillat M, Webb NA, Ruledge RE (2013) Measurement of the radius of neutron stars with high S/N quiescent low-mass x-ray binaries in globular clusters. Astrophys J 772:7

    Article  ADS  Google Scholar 

  • Hebeler K, Lattimer J, Pethick C, Schwenk A (2013) Equation of state and neutron star properties constrained by nuclear physics and observation. Astrophys J 773:11

    Article  ADS  Google Scholar 

  • Hewish A, Bell S, Pilkington J, Scott P, Collins R (1968) Observation of a rapidly pulsating radio source. Nature 217:709

    Article  ADS  Google Scholar 

  • Horowitz CJ, Piekarewicz J (2001a) Neutron star structure and the neutron radius of208pb. Phys Rev Lett 86:5647

    Article  ADS  Google Scholar 

  • Horowitz CJ, Piekarewicz J (2001b) The neutron radii of lead and neutron stars. Phys Rev C64:062802

    ADS  Google Scholar 

  • Horowitz CJ, Piekarewicz J (2002) Constraining urca cooling of neutron stars from the neutron radius of 208pb. Phys Rev C66:055803

    ADS  Google Scholar 

  • Jackson CB, Taruna J, Pouliot SL, Ellison BW, Lee DD, Piekarewicz J (2005) Compact objects for everyone: a real experiment. Eur J Phys 26:695

    Article  Google Scholar 

  • Lattimer JM, Prakash M (2004) The physics of neutron stars. Science 304:536–542

    Article  ADS  Google Scholar 

  • Lattimer JM, Prakash M (2007) Neutron star observations: prognosis for equation of state constraints. Phys Rept 442:109

    Article  ADS  Google Scholar 

  • Lattimer JM, Steiner AW (2014) Neutron star masses and radii from quiescent low-mass x-ray binaries. Astrophys J 784:123

    Article  ADS  Google Scholar 

  • Lindblom L (1992) Determining the nuclear equation of state from neutron-star masses and radii. Astrophys J 398:569

    Article  ADS  Google Scholar 

  • Oppenheimer JR, Volkoff GM (1939) On massive neutron cores. Phys Rev 55:374

    Article  ADS  MATH  Google Scholar 

  • Ozel F, Psaltis D, Guver T, Baym G, Heinke C et al (2016) The dense matter equation of state from neutron star radius and mass measurements. Astrophys J 820:1–28

    Article  Google Scholar 

  • Piekarewicz J (2014) The nuclear physics of neutron stars. AIP Conf Proc 1595(1):76

    Article  ADS  Google Scholar 

  • Steiner AW, Prakash M, Lattimer JM, Ellis PJ (2005) Isospin asymmetry in nuclei and neutron stars. Phys Rept 411:325

    Article  ADS  Google Scholar 

  • Steiner AW, Lattimer JM, Brown EF (2010) The equation of state from observed masses and radii of neutron stars. Astrophys J 722:33

    Article  ADS  Google Scholar 

  • Tolman RC (1939) Static solutions of einstein’s field equations for spheres of fluid. Phys Rev 55:364

    Article  ADS  MATH  Google Scholar 

  • Yakovlev DG, Haensel P, Baym G, Pethick CJ (2013) Lev Landau and the conception of neutron stars. Phys Usp 56:289–295

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the US Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Piekarewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Piekarewicz, J. (2016). Neutron Star Matter Equation of State. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics