Skip to main content

Characterization of Electrical Properties

  • Living reference work entry
  • First Online:
  • 786 Accesses

Abstract

Materials with advanced electrical properties are in great demand for the realization of the manifold products of information technology. Examples for such materials are transparent conductive coatings for touch screens or flat-panel displays, superconductors for high-frequency applications, or semiconducting sensor materials for gas detection systems. This chapter describes the most commonly used techniques for the electrical characterization of sol–gel materials. In the first section “Electrical Conductivity,” a short introduction into the terminology is given, and the fundamental techniques for resistance measurement are described. For characterization of semiconductors, not only the resistivity but also the charge carrier density and mobility and in addition the type of charge carriers (electrons or holes) are of great interest and can be determined by measurement of the Hall effect, which is explained in the second section on “Hall Effect Measurements.” Frequency-dependent electrical properties of materials and interfaces can be investigated by impedance spectroscopy and are covered in the section “Impedance Spectroscopy.” The work function is of high interest especially for materials used in displays and solar cells and can be studied by Kelvin probe, which is explained in the last section on “Work Function and Surface Potential (Kelvin Probe),” followed by a conclusion.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The probe spacing s of 1.588 mm (62.5 mils) owes its popularity to the fact that the factor 2π s in Eq. ( 7 ) becomes unity, and hence, the reading directly gives the resistivity.

References

  • Aegerter MA, Al-Dahoudi N, Solieman A, Kavak H, Oliveira P. Transparent conducting coatings made by chemical nanotechnology processes. Mol Cryst Liquid Cryst. 2004;417:105–14.

    Google Scholar 

  • Alam MJ, Cameron DC. Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process. Surf Coat Technol. 2001;142:776–80.

    Article  Google Scholar 

  • Alam MJ, Cameron DC. Preparation and characterization of TiO2 thin films by sol–gel method. J Sol–Gel Sci Technol. 2002;25:137–45.

    Article  Google Scholar 

  • Al-Dahoudi N. Wet chemical deposition of transparent conducting coatings made of redispersable crystalline ITO nanoparticles on glass and polymeric substrates. Ph.D. thesis, University of Saarland & INM, 2003

    Google Scholar 

  • Amarilla JM, Casal B, Galvan JC, Ruizhitzky E. Lithium MVO5 (M = Nb, Ta) bronzes. Chem Mater. 1992;4:62–7.

    Article  Google Scholar 

  • Amountza A, Riza F, Kasselouri V. Electrical conductivity of the ceramic compounds VNb9O25 and VTa9O25. Mater Lett. 2003;57:2298–304.

    Article  Google Scholar 

  • Anappara AA, Ghosh SK, Warrier PRS, Warrier KGK, Wunderlich W. Impedance spectral studies of sol–gel alumina–silver nanocomposites. Acta Mater. 2003;51:3511–9.

    Article  Google Scholar 

  • Anappara AA, Rajeshkumar S, Mukundan P, Warrier PRS, Ghosh S, Warrier KGK. Impedance spectroscopic studies of sol–gel derived subcritically dried silica aerogels. Acta Mater. 2004;52:369–75.

    Article  Google Scholar 

  • Anderson JC. Conduction in thin semiconductor films. Adv Physiol Educ. 1970;19:311–38.

    Google Scholar 

  • Ansorge F, Russel C. Preparation and thermoelectricity of TiO2/V2O5 powders. J Mater Sci. 1993;28:40–4.

    Article  Google Scholar 

  • Aparicio M, Damay P, Klein LC. Characterization of SiO2–P2O5–ZrO2 sol–gel/NAFION (TM) composite membranes. J Sol–Gel Sci Technol. 2003;26:1055–9.

    Article  Google Scholar 

  • Aranda P, Jimenez-Morales A, Galvan JC, Casal B, Ruizhitzky E. Composite membranes based on macrocycle/polysiloxanes – preparation, characterization and electrochemical behavior. J Mater Chem. 1995;5:817–25.

    Article  Google Scholar 

  • Artuso F, Picardi G, Bonino P, Decker F, Bencic S, Vuk AS, Krasovec UO, Orel B. Fe-containing CeVO4 films as Li intercalation transparent counter-electrodes. Electrochim Acta. 2001;46:2077–84.

    Article  Google Scholar 

  • ASTM Standard F390-98. Standard test method for sheet resistance of thin metallic films with a collinear four-probe array, 1996a.

    Google Scholar 

  • ASTM Standard F1530-94. Standard method for measuring flatness, thickness, and thickness variation on silicon wafers by automated noncontact scanning, 1996b.

    Google Scholar 

  • ASTM Standard F76-86. Standard test methods for measuring resistivity and Hall coefficient and determining Hall mobility in-single-crystal semiconductors, 2002a.

    Google Scholar 

  • ASTM Standard F1711-96. Standard practice for measuring sheet resistance of thin films for flat panel display manufacturing using a four-point probe, 2002b.

    Google Scholar 

  • ASTM Standard F1844-97. Standard practice for measuring sheet resistance of thin film conductors for flat panel display manufacturing using a noncontact eddy current gage, 2002c.

    Google Scholar 

  • Avellaneda CO, Bulhoes LOS. Intercalation in WO3 and WO3: Li films. Solid State Ion. 2003;165:59–64.

    Article  Google Scholar 

  • Bae JM, Honma I, Hirakawa S. Synthesis and properties of ceramics–polymer composite membranes as high temperature proton conducting electrolytes. J Korean Phys Soc. 1999;35:315–9.

    Google Scholar 

  • Baikie ID, Estrup PJ. Low cost PC based scanning Kelvin probe. Rev Sci Instrum. 1998;69:3902–7.

    Article  Google Scholar 

  • Bak T, Nowotny J, Rekas M, Sorrell CC, Banda PA, Wlodarski W. Electrical conductivity of indium sesquioxide thin film. J Mater Sci-Mater Electron. 2002;13:571–9.

    Article  Google Scholar 

  • Bandyopadhyay S, Paul GK, Roy R, Sen SK, Sen S. Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater Chem Phys. 2002;74:83–91.

    Article  Google Scholar 

  • Banerjee A, Pal S, Rozenberg E, Chaudhuri BK. Adiabatic and non-adiabatic hopping conduction in La–Pb–Mn–O type system. J Alloys Comp. 2001;326:85–8.

    Article  Google Scholar 

  • Bard AJ, Faulkner LR. Electrochemical method – fundamental and applications. New York: Wiley; 1980.

    Google Scholar 

  • Bassat JM, Allancon C, Odier P, Loup JP, Carvalho MD, Wattiaux A. Electronic properties of Pr4Ni3O10+/–δ . Eur J Solid State Inorg Chem. 1998;35:173–88.

    Article  Google Scholar 

  • Bates JB, Chu YT. Surface-topography and electrical response of metar–electrolyte interfaces. Solid State Ion. 1988;28:1388–95.

    Article  Google Scholar 

  • Baudry P, Aegerter MA, Deroo D, Valla B. Electrochromic window with lithium conductive polymer electrolyte. J Electrochem Soc. 1991;138:460–5.

    Article  Google Scholar 

  • Biswas RG, Sanders RD. The effects of a CeO2 coating on the corrosion parameters of type 304 stainless steel. J Mater Eng Perform. 1998;7:727–32.

    Article  Google Scholar 

  • Biswas PK, De A, Pramanik NC, Chakraborty PK, Ortner K, Hock V, Korder S. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass. Mater Lett. 2003;57:2326–32.

    Article  Google Scholar 

  • Blasco J, Garcia J. Structure, magnetic and electrical-properties in Nd1–x La x NiO3 system. Solid State Ion. 1993;63–65:593–8.

    Article  Google Scholar 

  • Blasco J, Garcia J. Structural, magnetic and electrical-properties of NdNi1–x Fe x O3 and NdNi1–x CoO3 systems. J Phys Chem Solids. 1994;55:843–52.

    Article  Google Scholar 

  • Boukamp BA. A nonlinear least-squares fit procedure for analysis of immittance data of electrochemical system. Solid State Ion. 1986a;20:31–44.

    Article  Google Scholar 

  • Boukamp BA. A package for impedance admittance data-analysis. Solid State Ion. 1986b;18:136–40.

    Article  Google Scholar 

  • Cai KF, Muller E, Drasar C, Mrotzek A. Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mater Sci Eng B. 2003;104:45–8.

    Article  Google Scholar 

  • Candy JP, Fouilloux P, Keddam M, Takenouti H. The characterization of porous-electrodes by impedance measurements. Electrochim Acta. 1981;26:1029–34.

    Article  Google Scholar 

  • Choi YM, Pyun SI, Moon SI, Hyung YE. A study of the electrochemical lithium intercalation behaviour of porous LiNiO2 electrodes prepared by solid-state reaction and sol–gel methods. J Power Sources. 1998;72:83–90.

    Article  Google Scholar 

  • Colomer MT, Jurado JR. Structural, microstructural, and electrical transport properties of TiO2-R uO2 ceramic materials obtained by polymeric sol–gel route. Chem Mater. 2000;12:923–30.

    Article  Google Scholar 

  • Conde A, Duran A, de Damborenea M. Polymeric sol–gel coatings as protective layers of aluminium alloys. Progr Org Coat. 2003;46:288–96.

    Article  Google Scholar 

  • Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Judeinstein P, Aegerter MA. New Li+ ion-conducting ormolytes. Sol Ener Mater Sol Cells. 1998;54:1–8.

    Article  Google Scholar 

  • Delimaneto P, Avaca LA, Atik M, Aegerter MA, Rochafilho RC. Electrochemical studies of the corrosion of 316L stainless-steel coated with sol–gel ZrO2 films. J Brazil Chem Soc. 1995;6:33–7.

    Article  Google Scholar 

  • Dziembaj R, Molenda M, Majda D, Walas S. Synthesis, thermal and electrical properties of Li1+δ Mn2–δ O4 prepared by a sol–gel method. Solid State Ion. 2003;157:81–7.

    Article  Google Scholar 

  • Eckertová L. Physics of thin films. 2nd ed. New York: Plenum Press; 1986.

    Google Scholar 

  • El Mandouh ZS, Selim MS. Physical properties of vanadium pentoxide sol–gel films. Thin Solid Films. 2000;371:259–63.

    Article  Google Scholar 

  • Epifani M, Forleo A, Capone S, Quaranta F, Rella R, Siciliano P, Vasanelli L. Hall effect measurements in gas sensors based on nanosized Os-doped sol–gel derived SnO2 thin films. IEEE Sens J. 2003;3:827–34.

    Article  Google Scholar 

  • Escote MT, da Silva AML, Matos JR, Jardim RF. General properties of polycrystalline LnNiO3 (Ln = Pr, Nd, Sm) compounds prepared through different precursors. J Solid State Chem. 2000;151:298–307.

    Article  Google Scholar 

  • Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films. Electrochim Acta. 2001;46:3715–24.

    Article  Google Scholar 

  • Feltri A, Grandi S, Mustarelli P, Cutroni M, Mandanici A. GeO2-doped silica glasses: an ac conductivity study. Solid State Ion. 2002;154:217–21.

    Article  Google Scholar 

  • Ganz D, Reich A, Aegerter MA. Laser firing of transparent conducting SnO2 sol–gel coatings. J Non-Cryst Solids. 1997;218:242–6.

    Article  Google Scholar 

  • Gasparro G, Puetz J, Ganz D, Aegerter MA. Parameters affecting the electrical conductivity of SnO2:Sb sol–gel coatings. Sol Energ Mater Sol Cells. 1998;54:287–96.

    Article  Google Scholar 

  • Gerlach E. Carrier scattering and transport in semiconductors treated by the energy-loss method. J Phys C. 1986;19:4585–603.

    Article  Google Scholar 

  • Gerlach E, Grosse P. Scattering of free electrons and dynamical conductivity. Adv Solid State Phys (Festkörperprobleme). 1977;17:157–93.

    Article  Google Scholar 

  • Gläser HJ. Large area glass coating. Dresden: Von Ardenne Anlagentechnik GmbH; 2000.

    Google Scholar 

  • Goebbert C, Gasparro G, Schuler T, Krajewski T, Aegerter MA. Influence of the layer morphology on the electrical properties of sol–gel transparent conducting oxide coatings. J Sol–Gel Sci Technol. 2000;19:435–9.

    Article  Google Scholar 

  • Guo YP, Heusing S, Aegerter MA. Characterization of non-sensitized and Ru(II) sensitized sol–gel Nb2O5 electrodes by impedance spectroscopy. Proc SPIE, Sol–Gel Opt VI. 2002;4804:34–43.

    Article  Google Scholar 

  • Guzman G, Dahmani B, Puetz J, Aegerter MA. Matériau utilisable dans la fabrication de dispositifs d’affichage lumineux, en particulier de diodes électroluminescentes organiques. Corning Inc., Patent FR2844136 (A1) 2004-03-05.

    Google Scholar 

  • Hammond JW, Liu CC. Silicon based microfabricated tin oxide gas sensor incorporating use of Hall effect measurement. Sens Actuators B. 2001;81:25–31.

    Article  Google Scholar 

  • Hanlon TJ, Coath JA, Richardson MA. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films. 2003;436:269–72.

    Article  Google Scholar 

  • Hartnagel HL, Dawar AL, Jain AK, Jagadish C. Semiconducting transparent thin films. Bristol/Philadelphia: Institute of Physics Publishing; 1995.

    Google Scholar 

  • Hazra S, Ghosh A, Chakravorty D. Electrical properties of sol–gel derived semiconducting cobalt silicate gel–glass. Solid State Commun. 1995;96:507–10.

    Article  Google Scholar 

  • Hilgendorff M, Spanhel L, Rothenhausler C, Muller G. From ZnO colloids to nanocrystalline highly conductive films. J Electrochem Soc. 1998;145:3632–7.

    Article  Google Scholar 

  • Hussain AA, Sayer M. Fabrication, characterization and theoretical analysis of high-T C Y–Ba–Cu–O superconducting films prepared by a chemical sol–gel method. J Appl Phys. 1991;70:1580–90.

    Article  Google Scholar 

  • Hussam AA, Sayer M. The effect of deposition conditions on the structure and electrical properties of Y–Ba–Cu–O superconducting thin-films. Vacuum. 1993;44:41–6.

    Article  Google Scholar 

  • Jardim RF, Bendor L, Maple MB. Preparation, formation kinetics, and properties of polycrystalline Nd1.85Ce0.15CuO4–y obtained from a sol–gel precursor. J Alloys Comp. 1993;199:105–13.

    Article  Google Scholar 

  • Ji ZG, He ZJ, Song YL, Liu K, Ye ZZ. Fabrication and characterization of indium-doped p-type SnO2 thin films. J Cryst Growth. 2003;259:282–5.

    Article  Google Scholar 

  • Kakihana M. “Sol–Gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol. 1996;6:7–55.

    Article  Google Scholar 

  • Kareiva A, Tautkus S, Rapalaviciute R, Jorgensen JE, Lundtoft B. Sol–gel synthesis and characterization of barium titanate powders. J Mater Sci. 1999;34:4853–7.

    Article  Google Scholar 

  • Keiser H, Beccu KD, Gutjahr MA. Evaluation of pore structure of porous-electrodes using measurements of impedance. Electrochim Acta. 1976;21(8):539–43.

    Article  Google Scholar 

  • Kohl D. Function and application of gas sensors. J Phys D: Appl Phys. 2001;34:R125.

    Google Scholar 

  • Kololuoma T, Rantala JT. Effect of argon plasma treatment on conductivity of sol–gel fabricated Sb-doped SnO2 thin films. Electronics Lett. 2000;36:172–3.

    Article  Google Scholar 

  • Kordas G, Teepe MR, Kenzer DS, Moon B. Processing of the Tl–Ca–Ba–Cu–O high-T C phase via the sol–gel route. J Mater Chem. 1992;2:467–70.

    Article  Google Scholar 

  • Kraftmakher Y. Eddy currents: contactless measurement of electrical resistivity. Am J Phys. 2000;68:375–9.

    Article  Google Scholar 

  • Lakeman CDE, Payne DA. Sol–gel processing of electrical and magnetic ceramics. Mater Chem Phys. 1994;38:305–24.

    Article  Google Scholar 

  • Li DS, Chang ZG, Wu SR, Xiong WM, Wang YY. Preparation of PTCR nanosized ceramic powder and its sintering materials. Chin J Inorg Chem. 2003;19:971–4.

    Google Scholar 

  • Liu J, Radlein E, Frischat GH. Preparation, nanostructure and properties of indium tin oxide (ITO) films on glass substrates – Part 1. Preparation and nanostructure. Phys Chem Glass. 1999;40:277–81.

    Google Scholar 

  • Long AR. Frequency-dependent loss in amorphous semiconductors. Adv Physiol Educ. 1982;31:553–637.

    Google Scholar 

  • Macdonald JR, editor. Impedance spectroscopy – emphasizing solid materials and systems. New York: Wiley; 1987a.

    Google Scholar 

  • Macdonald JR. L.D.P. A flexible procedure for analyzing impedance spectroscopy results – description and illustrations. Solid State Ion. 1987b;24:61–79.

    Article  Google Scholar 

  • Maissel LI. Electrical properties of metallic thin films. In: Maissel LI, Glang R, editors. Handbook of thin film technology, vol. 13. New York: McGraw-Hill; 1970. p. 11–33.

    Google Scholar 

  • Matsuda H, Mizushima T, Kuwabara M. Low-temperature synthesis and electrical properties of semiconducting BaTiO3 ceramics by the sol–gel method with high concentration alkoxide solutions. J Ceram Soc Jap. 1999;107:290–2.

    Article  Google Scholar 

  • Meneses CT, Macedo MA, Vicentin FC. Li x Mn2O4 thin films characterization by X-ray, electrical conductivity and XANES. Microelectronics J. 2003;34:561–3.

    Article  Google Scholar 

  • Mori T, Kawano K, Oda N. High-TCR bolometer thin films by sol–gel processing. Electroceram Jpn III. 2000;181–1:117–20.

    Google Scholar 

  • Munro B, Wang B, Greenblatt M. Impedance measurements on LiCl–Al2O3–SiO2 xerogels. J Non-Cryst Solids. 1996;196:291–6.

    Article  Google Scholar 

  • Nan J, Wu J, Deng Y, Nan CW. Thermoelectric properties of La-doped Ca–Co–O misfit cobaltites. Solid State Comm. 2002;124:243–6.

    Article  Google Scholar 

  • Nan J, Wu J, Deng Y, Nan CW. Synthesis and thermoelectric properties of (Na x Ca1–x )Co4O9 ceramics. J Eur Ceram Soc. 2003;23:859–63.

    Article  Google Scholar 

  • Natsume Y, Sakata H. Zinc oxide films prepared by sol–gel spin-coating. Thin Solid Films. 2000;372:30–6.

    Article  Google Scholar 

  • Natsume Y, Sakata H. Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol–gel process. Mater Chem Phys. 2003;78:170–6.

    Article  Google Scholar 

  • Ohring M. Electrical and magnetic properties of thin films. In: Ohring M, editor. The materials science of thin films. London: Academic; 1992. p. 451–506.

    Chapter  Google Scholar 

  • Ohya Y, Ueda M, Takahashi Y. Oxide thin film diode fabricated by liquid-phase method. Jpn J Appl Phys Part 1. 1996;35:4738–42.

    Article  Google Scholar 

  • Orton JW, Powell MJ. The hall effect in polycrystalline and powdered semiconductors. Rep Prog Phys. 1980;43:1263–307.

    Article  Google Scholar 

  • Padmavathi K, Rajakumari V, Vithal M, Prasd V, Subramanyam SV, Reddy PV. Preparation of some nano size colossal magneto resistance materials by the sol–gel route. Mod Phys Lett B. 2003;17:19–24.

    Article  Google Scholar 

  • Pan HC, Chou CC, Tsai HL. Low-temperature processing of sol–gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr0.52Ti0.48O3 films using CO2 laser annealing. Appl Phys Lett. 2003;83:3156–8.

    Article  Google Scholar 

  • Paul GK, Sen SK. Sol–gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films. Mater Lett. 2002a;57:742–6.

    Article  Google Scholar 

  • Paul GK, Bandyopadhyay S, Sen SK. Transport properties of as-prepared Al-doped zinc oxide films using sol–gel method. Phys Status Solidi A. 2002b;191:509–18.

    Article  Google Scholar 

  • Piao J, Takahashi S, Kohiki S. Preparation of Cr-doped V2O3 films by sol–gel processing and their resistivity – temperature characteristics. J Ceram Soc Jpn. 1999;107:375–8.

    Article  Google Scholar 

  • Puetz J, Ganz D, Gasparro G, Aegerter MA. Influence of the heating rate on the microstructure and on macroscopic properties of sol–gel SnO2:Sb coatings. J Sol–Gel Sci Technol. 1998;13:1005–10.

    Article  Google Scholar 

  • Qin XY, Zhang W, Zhang LD, Jiang LD, Liu XJ, Jin D. Low-temperature resistance and its temperature dependence in nanostructured silver. Phys Rev B. 1997;56:10596–604.

    Article  Google Scholar 

  • Ramadan AA, Gould RD, Ashour A. On the Van der Pauw method of resistivity measurements. Thin Solid Films. 1994;239:272–5.

    Article  Google Scholar 

  • Ravinder D, Shalini P, Mahesh P, Boyanov BS. High temperature thermoelectric power studies of cobalt and titanium substituted barium hexagonal ferrites. J Magn Magn Mater. 2004;268:154–8.

    Article  Google Scholar 

  • Rella R, Serra A, Siciliano P, Vasanelli L, De G, Licciulli A. CO sensing properties of SnO2 thin films prepared by the sol–gel process. Thin Solid Films. 1997;304:339–43.

    Article  Google Scholar 

  • Ren YZ, Wang JY, Liu EB. Preparation of nanocrystalline rare earth mixed oxides DyFe x Co1–x O3–δ and its conductivity. J Rare Earths. 2002;20:471–4.

    Google Scholar 

  • Rubinstein I. Physical electrochemistry – principles, methods and applications. New York: Marcel Dekker; 1995.

    Google Scholar 

  • Rukmini HR, Choudhary RNP, Rao VV. Structural and electrical properties of sol–gel prepared (La, Li) modified PZT ceramics. Mater Lett. 1998;37:268–75.

    Article  Google Scholar 

  • Sandu CS, Roger JA, Canut B, Blanchin MG, Teodorescu VS. Densification and carrier concentration in Sb doped sol–gel elaborated tin oxide. Radiat Eff Defects Solids. 2001;156:129–34.

    Article  Google Scholar 

  • Schroeder DK. Semiconductor material and device characterization. 2nd ed. New York: Wiley; 1998.

    Google Scholar 

  • Schuler T, Aegerter MA. Optical, electrical and structural properties of sol–gel ZnO:Al coatings. Thin Solid Films. 1999;351:125–31.

    Article  Google Scholar 

  • NIST Semiconductor Electronics Division, EEEL. Hall effect measurements. http://www.eeel.nist.gov/812/hall.html, 2002.

  • Shiomi H, Furukawa H. Effect of addition of Ag on the microstructures and electrical properties of sol–gel derived SnO2 glass composites. J Mater Sci-Mater Electron. 2000;11:31–7.

    Article  Google Scholar 

  • Smits FM. Measurements of sheet resistivities with the four-point probe. Bell Syst Tech J. 1958;37:711–8.

    Article  Google Scholar 

  • Sun Y, Ehrmann O, Wolf J, Reichl H. The correction factors and their new curve for the measurement of sheet resistance of a square sample with a square four-point probe. Rev Sci Instrum. 1992;63:3752–6.

    Article  Google Scholar 

  • Taguchi H, Matsu-ura S, Nagao M, Kido H. Electrical properties of perovskite-type La(Cr1–x Mn x )O3+δ . Physica B. 1999;270:325–31.

    Article  Google Scholar 

  • Tahar RBH, Tahar NBH. Mechanism of carrier transport in aluminum-doped zinc oxide. J Appl Phys. 2002;92:4498–501.

    Article  Google Scholar 

  • Tahar RBH, Ban T, Ohya Y, Takahashi Y. Optical, structural, and electrical properties of indium oxide thin films prepared by the sol–gel method. J Appl Phys. 1997;82:865–70.

    Article  Google Scholar 

  • Tahar RBH, Ban T, Ohya Y, Takahashi Y. Electronic transport in tin-doped indium oxide thin films prepared by sol–gel technique. J Appl Phys. 1998;83:2139–41.

    Article  Google Scholar 

  • Tatte T, Avarmaa T, Lohmus R, Maeorg U, Pistol ME, Raid R, Sildos I, Lohmus A. Transparent and conductive Sb-doped tin oxide SPM tips prepared by sol-gel method. Mater Sci Eng C. 2002;19:101–4.

    Article  Google Scholar 

  • Terrier C, Chatelon JP, Roger JA. Electrical and optical properties of Sb:SnO2 thin-films obtained by the sol–gel method. Thin Solid Films. 1997;295:95–100.

    Article  Google Scholar 

  • Tiwari A, Rajeev KP. Anomalous thermoelectric power of sol–gel prepared NdNiO3–δ . Mod Phys Lett B. 1997;11:1161–7.

    Article  Google Scholar 

  • Uhlir AJ. The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering. Bell Syst Tech J. 1955;34:105–28.

    Article  Google Scholar 

  • Valdes LB. Resistivity measurements on germanium for transistors. Proc IRE. 1954;42:420–7.

    Article  Google Scholar 

  • Van der Pauw LJ. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Phil Res Rep. 1958a;13:1–9.

    Google Scholar 

  • Van der Pauw LJ. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Res Rep. 1958b;20:220–4.

    Google Scholar 

  • Vinod MP, Bahnemann D. Materials for all-solid-state thin-film rechargeable lithium batteries by sol–gel processing. J Solid State Electrochem. 2002;6:498–501.

    Article  Google Scholar 

  • Vivier V, Farcy J, Pereira-Ramos JP. Electrochemical lithium insertion in sol–gel crystalline vanadium pentoxide thin films. Electrochim Acta. 1998;44:831–9.

    Article  Google Scholar 

  • Wang J, Bell JM, Skryabin IL. Kinetics of charge injection in sol–gel deposited WO3. Solar Ener Mater Solar Cells. 1999;56:465–75.

    Article  Google Scholar 

  • Wang J, Glora M, Petricevic R, Saliger R, Proebstle H, Fricke J. Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mater. 2001a;8:159–65.

    Article  Google Scholar 

  • Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zheng GZ, Gui YS. Morphological effects on the electrical and electrochemical properties of carbon aerogels. J Electrochem Soc. 2001b;148:D75–7.

    Article  Google Scholar 

  • Wang J, Zhang SQ, Shen J, Guo YZ, Attia SM, Zhou B, Lai ZQ, Zheng GZ, Gui YS. Electrical transport properties of carbon aerogels. J Porous Mater. 2001c;8:167–70.

    Article  Google Scholar 

  • Wang X, Gu M, Yang B, Zhu SN, Cao WW. Hall effect and dielectric properties of Mn-doped barium titanate. Microelectronic Eng. 2003;66:855–9.

    Article  Google Scholar 

  • Wang DL, Chen LD, Yao Q, Li JG. High-temperature thermoelectric properties of Ca3Ca4O9+δ with Eu substitution. Solid State Commun. 2004;129:615–8.

    Article  Google Scholar 

  • Wasiucionek M, Breiter MW. Lithium conduction in inorganic gel monoliths containing LiNO3 or LiBr at low temperatures. Solid State Ion. 1999;119:211–6.

    Article  Google Scholar 

  • Wu J, Nan J, Nan CW, Deng Y, Lin Y, Zhao S. Preparation and transport properties of Li-doped NiO and (Li+ Ca)-doped NiO oxides. Phys Status Solidi A. 2002a;193:78–85.

    Article  Google Scholar 

  • Wu JB, Nan J, Zhao SJ, Lin YH, Deng Y, Nan CW. Preparation of LTNO ceramics via sol–gel method and its thermoelectric properties. Rare Metal Mater Eng. 2002b;31:335–9.

    Google Scholar 

  • Xu SQ, Ma HP, Dai SX, Jiang ZH. Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films. J Mater Sci. 2004;39:489–93.

    Article  Google Scholar 

  • Yin DC, Xu NK, Zhang JY, Zheng XL. Vanadium dioxide films with good electrical switching property. J Phys D. 1996;29:1051–7.

    Article  Google Scholar 

  • Younes MK, Ghorbel A, Rives A, Hubaut R. Comparative study of the acidity of sulphated zirconia supported on alumina prepared by sol–gel and impregnation methods. J Sol–Gel Sci Technol. 2003;26:677–80.

    Article  Google Scholar 

  • Young DL, Coutts TJ, Kaydanov VI. Density-of-states effective mass and scattering parameter measurements by transparent phenomena of thin films. Rev Sci Instrum. 2000;71:462–66.

    Google Scholar 

  • Yu DB, Yu WC, Wang DB, Qian YT. Structural, optical, and electrical properties of indium tin oxide films with corundum structure fabricated by a sol–gel route based on solvothermal reactions. Thin Solid Films. 2002;419:166–72.

    Article  Google Scholar 

  • Zergioti I, de Laat AWM, Guntow U, Hutter F, Maerten O. Laser sintering of perovskite-oxide and metal coatings by the Sol–Gel process. Appl Phys A. 1999;69:S433–6.

    Article  Google Scholar 

  • Zhang J, Hu JQ, Zhu FR, Gong H, O’Shea SJ. Quartz crystal microbalance coated with sol–gel-derived thin films as gas sensor for NO detection. Sensors. 2003;3:404–14.

    Article  Google Scholar 

  • Zhao GL, Han GR. Study of the electrical properties of sol–gel-derived titanium–vanadium oxide films. Int J Mod Phys B. 2002;16:4465–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Pütz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pütz, J., Heusing, S., Aegerter, M.A. (2016). Characterization of Electrical Properties. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics