Skip to main content

Ferroelectric and Piezoelectric Properties

  • Living reference work entry
  • First Online:
  • 173 Accesses

Abstract

One of important applications of the sol–gel method is the fabrication of ferroelectric materials. Most ferroelectric materials are multimetal oxides. The main advantage of the sol–gel method is that ferroelectric materials can be formed to various shapes, such as bar, disk, fiber, and film, in fact, the most successful product is ferroelectric thin film. This chapter is dealing with some general concepts of the ferroelectric and piezoelectric properties, as well as some typical methods for measurement of the ferroelectric materials obtained by sol–gel method.

This is a preview of subscription content, log in via an institution.

References

  • Batthias BT, von Hippel A. Structure, electrical, and optical properties of barium titanate. Phys Rev. 1948;73:268.

    Article  Google Scholar 

  • Bescher EP, Xu Y, Mackenzie JD. Ferroelectric-glass nano-composites. Proc SPIE. 1997;3136:397. In Sol–gel Optics, vol. IV.

    Article  Google Scholar 

  • Blattner H, Kanzig WJ, Merz WJ, Sutter H. Helv Phys Acta. 1948;21:207.

    Google Scholar 

  • Boulton JM, Teowee G, Bommersbach WM, Uhlmann DR. Second harmonic generation from sol–gel derived ferroelectric and piezoelectric thin films. Proc SPIE. 1992;1758:292–303. In Sol–gel Optics, vol. II, J.D. Mackenzie, ed.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science. San Diego: Academic; 1990.

    Google Scholar 

  • Budd KD, Payne DA. Optical properties and densification of sol–gel derived PbTiO3 thin-layers. Proc SPIE. 1990;1328:450–5. In Sol–gel Optics, vol. I, J.D. Mackenzie D.R Ulrich, eds.

    Article  Google Scholar 

  • Cheng C-H, Xu Y, Mackenzie JD. Photoelectric properties of un-doped and Fe-doped LiNbO3 films made by sol–gel method. Mater Res Soc Symp Proc. 1991;243:65.

    Article  Google Scholar 

  • Cheng C-H, Xu Y, Cherry HB, Tseng J, Um G, Mackenzie JD. Piezoelectric properties of micro-machined cantilever PLZT thin films. Ferroelectrics. 1999;232:159–64.

    Article  Google Scholar 

  • Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76:241.

    Article  Google Scholar 

  • Eichorst DJ, Payne DA. Sol–gel processing of lithium niobate thin-layers for optical applications. Proc SPIE. 1990;1328:456–65. In Sol–gel Optics, vol. I, J.D. Mackenzie, D.R. Ulrich, eds.

    Article  Google Scholar 

  • Fatuzzo E. Measurement of small, fast variations in complex permittivity at ultra-high frequencies. Proc Instrum Electron Eng. 1962;109C:283.

    Google Scholar 

  • Fuxi G, Xian XL. Preperation and optical nonlinear properties of PLT ceramic films by sol–gel process. Proc SPIE. 1992;1758:310–8. In Sol–gel optics, vol. II, J.D. Mackenzie, ed.

    Article  Google Scholar 

  • Glass AM. Investigation of the electrical properties of Sr1-xBaxNb2O6 with special reference to pyroelectric detection. J Appl Phys. 1969;40:4699.

    Article  Google Scholar 

  • Hagberg DS, Payne DA. Grain-oriented lithium niobate thin-layers prepared at sol–gel method. Mater Res Soc Symp Proc. 1990;200:19–24.

    Article  Google Scholar 

  • Hamazaki S, Shimizu F, Takahashi Y, Takashige M. Observation on creation and disappearance of 90° domain in BaTiO3 by scanning probe microscopy. Ferroelectrics. 2001;264:191–6.

    Article  Google Scholar 

  • Hirano S, Kikuta K, Kato K. Processing of stochiometric and Ti doped LiNbO3 films with preferred orientation from metal alkoxides. Mater Res Soc Symp Proc. 1990;200:3–11.

    Article  Google Scholar 

  • Hoffmann M, Kügeler C, Böttger U, Waser R. PZT and PMN-PT thin film cantilevers: comparison between monomorph and bimorph structures. Mater Res Soc Symp Proc. 2002;688:181–6.

    Google Scholar 

  • Ichijo B. On the new method of measuring dielectric constant and loss angles of semiconductors. J Appl Phys. 1953;24:307.

    Article  Google Scholar 

  • IRE Standards on Piezoelectric Crystals. Proc IRE. 1949;37:1378.

    Article  Google Scholar 

  • IRE Standards on Piezoelectric Crystals. Proc IRE. 1957;45:353.

    Article  Google Scholar 

  • IRE Standards on Piezoelectric Crystals. Proc IRE. 1958;46:764.

    Article  Google Scholar 

  • IRE Standards on Piezoelectric Crystals. Proc IRE. 1961;49:1161.

    Article  Google Scholar 

  • Johnson JA, Lisoni JG, Wouters DJ. Iridium based electrodes for ferroelectric capacitor fabrication. Mater Res Soc Symp Proc. 2002;688:59–64.

    Google Scholar 

  • Kang J, Yoko T, Kozuka H, Sakka S. Preparation of Pb-based complex perovskite coating films by sol–gel method. Proc SPIE. 1992;1758:249–59. In Sol–gel optics, vol. II, J.D. Mackenzie, ed.

    Article  Google Scholar 

  • Kim D-J, Maria JP, Kingon AI. Compositional effect on the piezoelectric and ferroelectric properties of chemical deposited PZT thin films. Mater Res Soc Symp Proc. 2002;688:351–6.

    Google Scholar 

  • Li JD, Lei LM, Shen WB. Acta Physica Sinica. 1984;13:407.

    Google Scholar 

  • Liu ST, Heaps J, Tufte D. The pyroelectric properties of the lanthanum-doped ferroelectric PLZT ceramics. Ferroelectrics. 1972;3:281.

    Article  Google Scholar 

  • Lurio A, Stern E. Measurements of the dielectric constant of BaTiO3 single crystals in the paraelectric region at x–band. J Appl Phys. 1960;31:1805.

    Google Scholar 

  • Mackenzie JD, Xu YH. Ferroelectric materials by the sol-gel method. J Sol-Gel Sci Technol. 1997;8:673.

    Google Scholar 

  • Merz W. The electric and optical behavior of BaTiO3 single–domain crystals. J Phys Rev. 1949;76:1221.

    Article  Google Scholar 

  • Merz W. Double hysteresis loop of BaTiO3 at the Curie Point. J Phys Rev. 1953;91:513.

    Article  Google Scholar 

  • Pan W, Cross LE. A sensitive double beam laser interferometer for studying high-frequency piezoelectric and electrostrictive strains. Rev Sci Instrum. 1989;60:2701.

    Article  Google Scholar 

  • Sayer CB, Tower CH. Rochelle salt as a dielectric. Phys Rev. 1930;35:269.

    Article  Google Scholar 

  • Sun LL, Liu WG, Tan OK, Zhu WG. Micro-machined pyroelectric infrared detector based on sol–gel derived Pb(Zr0.3Ti0.7)O3/PbTiO3 multilayer thin films. Mater Res Soc Symp Proc. 2002;688:357–62.

    Google Scholar 

  • Teowee G, Boulton JM, Motakef S, Uhlmann DR, Zelinski BJJ. Optical properties of sol–gel derived PZT thin films. Proc SPIE. 1992;1758:236–48. In Sol–gel Optics, vol. II, J.D. Mackenzie, ed.

    Article  Google Scholar 

  • Tokumitsu E, Suzuki T, Sugita N. Ferroelectric-gate structures and field-effect transistors using (Bi,La)4Ti3Oi2 films. Mater Res Soc Symp Proc. 2002;688:67–72.

    Google Scholar 

  • Watananbe T, Saito K, Osada M, Funakubo H. Preparation and characterization of a- and b- axis-oriented epitaxially grown Bi4Ti3O12-based thin films on rutile-type oxides. Mater Res Soc Symp Proc. 2002;688:155–60.

    Google Scholar 

  • Xu Y. Ferroelectric materials and their applications. Amsterdam: North-Holland; 1991.

    Google Scholar 

  • Xu Y, Mackenzie JD. Ferroelectric thin films prepared by sol–gel processing. Integr Ferroelectr. 1992;1:17–42.

    Article  Google Scholar 

  • Xu Y, Mackenzie JD. A theoretical explanation for ferroelectric-like properties of amorphous Pb(Zr x Ti1–x )O3 and BaTiO3. J Non-Cryst Solids. 1999;246:136.

    Article  Google Scholar 

  • Xu Y, Chen CJ, Xu R, Mackenzie JD. The self-biased heterojunction effect of ferroelectric thin film on silicon substrate. J Appl Phys. 1990a;67:2985–91.

    Article  Google Scholar 

  • Xu Y, Chen CJ, Xu R, Mackenzie JD. Ferroelectric thin films on silicon and fused silica substrates by sol–gel process. Mater Res Soc Symp Proc. 1990b;200:13–8.

    Article  Google Scholar 

  • Xu Y, Chen CJ, Xu R, Ferroelectric MJD. Sr0.6Ba0.4 Nb2O6 thin films by sol–gel process: electrical and optical properties. Phys Rev B. 1991;44:35–41.

    Article  Google Scholar 

  • Xu Y, Cheng CH, Mackenzie JD. Electrical characterizations of polycrystalline and amorphous thin films of Pb(Zr x Ti1–x )O3 and BaTiO3 prepared by sol–gel technique. J Non-Cryst Solids. 1994;176:1–17.

    Article  Google Scholar 

  • Xu Y, Cheng CH, Mackenzie JD. Epitaxial KNbO3 and Fe-doped KNbO3 thin films prepared by the sol–gel technique. Mater Res Soc Symp Proc (Ferroelectric Thin Films V). 1996;433:401.

    Article  Google Scholar 

  • Xu Y, Yudan L, Cheng CH, Mackenzie JD. Epitaxial ferroelectric thin films prepared by the sol–gel technique. Ferroelectrics. 1997;195:283.

    Article  Google Scholar 

  • Xu Y, Cheng CH, Mackenzie JD. Microstructure in heteroepitaxial potassium niobate thin films. J Korean Phys Soc. 1998;32:S1724–6.

    Google Scholar 

  • Xu Y, Ye H, Cheng CH, Mackenzie JD. Electro-optic effect in nano-crystalline SbSI-doped glass. Ferroelectrics. 2001;259:259–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Xu, Y., Mackenzie, J.D. (2017). Ferroelectric and Piezoelectric Properties. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics