
Fast Path Planning Algorithm for the RoboCup
Small Size League

Saith Rodŕıguez1, Eyberth Rojas1, Katheŕın Pérez1, Jorge López1,
Carlos Quintero1, and Juan Calderón1,2(B)

1 Universidad Santo Tomás, Bogotá, Colombia
{saithrodriguez,eyberthrojas,andrea.perez,jorgelopez,

carlosquinterop,juancalderon}@usantotomas.edu.co
2 University of South Florida, Tampa, FL, USA

juancalderon@mail.usf.edu

Abstract. Plenty of work based on the Rapidly-exploring Random Trees
(RRT) algorithm for path planning in real time has been developed
recently. This is the most used algorithm by the top research teams in
the Small Size League of RoboCup. Nevertheless, we have concluded that
other simpler alternatives show better results under these highly dynamic
environments. In this work, we propose a new path planning algorithm
that meets all the robotic soccer challenges requirements, which has
already been implemented in the STOx’s team for the RoboCup com-
petition in 2013. We have evaluated the algorithm’s performance using
metrics such as the smoothness of the paths, the traveled distance and
the processing time and compared it with the RRT algorithm’s. The
results showed improved performance over RRT when combined mea-
sures are used.

Keywords: Path planning · Mobile robots · Real-time systems ·
RoboCup

1 Introduction

Collision-avoidance path planning has been a major challenge for robotics
researchers. Different proposals have been made to address individual, but con-
trasting, requirements, such as following the shortest or smoothest trajectory or
minimizing processing time. Our system has the goal to quickly find a smooth
path with a low computational cost without ensuring that it is the shortest
trajectory.

RoboCup has reveal a strong and rapid need to develop efficient path plan-
ning algorithms for complex environments. It is a global initiative in which
researchers around the world present their best developments in the topics of
robotics, artificial intelligence and related areas [1]. Based on the RoboCup ini-
tiative, every year many tournaments are held in different countries around the
world, therefore teams participate in various disciplines [2].

c© Springer International Publishing Switzerland 2015
R.A.C. Bianchi et al. (Eds.): RoboCup 2014, LNAI 8992, pp. 407–418, 2015.
DOI: 10.1007/978-3-319-18615-3 33



408 S. Rodŕıguez et al.

For the case of the Small Size League (SSL) [3], the challenge is a soccer
contest in which full autonomous robots are able to cooperate to score and win
a match. Its artificial vision system sends field images at a rate of 60 fps [4], so
path planning and intelligence processing must be made within the span of 16 ms.
Thus, the challenge involves a highly dynamic multi-agent environment which
implies the need for obstacles avoidance and fast path planning algorithms.

Initially, we present a short review of related work, specifically describing the
RRT [5] algorithm, some applications and results that this algorithm generates
in situations with several obstacles. After that, we describe in detail the proposed
algorithm and we suggest a set of benchmarking scenarios in the context of this
league, including real game situations from the RoboCup 2013 competition.

Then, we show the results of our performance analysis for both algorithms over
the proposed scenarios. We evaluated specific attributes such as path smooth-
ness, distance traveled and the processing time. Finally, we include conclusions
and future work sections.

2 Related Work

The problem of path planning under dynamic environments has been tackled
by a variety of researchers. Most of them have focused on optimizing specific
performance measures such as obtaining smooth paths in the less amount of
time as possible. For example, Tsubouchi et al. analyze the behavior of a single
robot within a multi-obstacle dynamic environment [6]. The navigation scheme
in this work is based on a heuristic and assumes that obstacles move with a
piecewise constant velocity.

On the Small Size League challenge, the robotic players have omnidirectional
traction and the dynamic characteristic of the environment have to be carefully
taken into account for a proper navigation. Han et al. studied the control of multi-
ple non-holonomic robotic agents in which half the obstacles are non-controllable
opponents whose dynamic patterns are unknown [7]. The algorithm in this work
creates a set of halfway points between the initial robot position and its final
destination. These points are calculated based on the evaluation of potential
blockages in the route.

Kuffner et al. presented an algorithm based on Rapidly-exploring Random
Trees (RRT) [8]. This algorithm is specifically suited to overcome the constraints
that arise in dynamic environments. RRT creates the path that should be fol-
lowed by an agent from its initial position to a target point by iteratively build-
ing search trees that quickly explore the environment. The general procedure
is divided in 5 main processes as shown in Fig. 1. However, we have found that
this approach can still be improved with regards to computational cost and path
smoothness, in contexts like the RoboCup SSL environment.

The result of applying the RRT algorithm to an environment with a set of
obstacles is shown in Fig. 2. Where the green region represents the obstacles, the
white region is the obstacle-free configuration space, blue branches are the RRT,
and the black line is the solution path between the starting configuration (blue)
and the goal configuration (red).



Fast Path Planning Algorithm for the RoboCup Small Size League 409

Fig. 1. Diagram RRT

Fig. 2. Example RRT (Color figure online)

The RRT algorithm has been widely embraced in a variety of applications in
different environments. This has been especially true for the teams that partici-
pate in the small size league of the RoboCup initiative. For instance, Bruce et al.
showed a RRT-based planning system in simulation and its implementation on
actual robots [9]. This algorithm is presented as ERRT and aims at reducing the
cost of searching the nearest point to the path that is being build when compared
to the original RRT. This feature increases the efficiency of the path planning pro-
cedure for real time applications even in dynamic and continuous environments.

Desaraju et al. presented a Decentralized Multi-Agent Rapidly-exploring
Random Tree (DMA-RRT) algorithm [10]. This approach allows to perform an
efficient planning by considering complex environments. It uses a coordination
strategy to dynamically update the order in which the robots carry out their
individual planning.

3 Proposal

After having reviewed path planning algorithms for dynamic environments, we
have implemented RRT and validated it in simulated game situations. After



410 S. Rodŕıguez et al.

Fig. 3. Path without obstacles

that, we have measured the time taken by the algorithm to generate paths in
complex situations. Finally we have proposed a new planning algorithm that
is capable of dramatically reducing the time required to create the path and
compared it with the RRT algorithm. Both are validated in real game situations
of the RoboCup 2013.

The proposed algorithm is based on generating straight trajectories between
an initial state and a goal state. To accomplish this, an initial straight trajectory
between these points is defined and checked for collisions against all obstacles. If
there is no obstacle, the selected route is returned, as shown in Fig. 3. Otherwise,
a subgoal state is generated to avoid the obstacle. As a consequence, the original
trajectory is split in two: one between the initial state and the subgoal, and
another one between the subgoal and the goal state. Then, these new trajectories
are recursively evaluated until the algorithm finds an obstacle-free path. Below
we show the developed algorithm:

Pseudocode of the proposed path planning

function FastPathPlanning (environment,trajectory,depth)

obstacle = trajectory.Collides(environment)

if theres is an obstacle and depth < max_recursive then
{

subgoal=SearchPoint(trajectory,obstacle,environment);

trajectory1=GenerateSegment(trajectory.start,subgoal);
trajectory1=FastPathPlanning(environment,trajectory1,depth+1);
trajectory2=GenerateSegment(subgoal,trajectory.goal);
trajectory2=FastPathPlanning(environment,trajectory2,depth+1);
trajectory=JoinSegments(trajectory1,trajectory2);

}

return trajectory;

The function Collides determines if there is any obstacle in the trajectory
and if this is the case, the function returns the position of the closest obstacle
in the trajectory.



Fast Path Planning Algorithm for the RoboCup Small Size League 411

Fig. 4. (a) Subgoal selection. (b) New paths created with subgoal

The function SearchPoint assigns a new point (subgoal) at the side of this
obstacle. This point is located from the obstacle to a distance equal to the robot
diameter and 90 or −90 degrees related to the path between the initial point to
the obstacle (the sign is a function parameter). See Fig. 4a. In the case the new
point collides with an obstacle, the function keeps moving the point one robot
diameter in the same direction, until an obstacle free point is found.

The function GenerateSegment generates a straight path between two points.
It is used to create two new paths. The first one between the initial state and
the subgoal and the second one between the subgoal and the goal state. These
new paths will be analyzed recursively as shown in Fig. 4b. Figure 5 shows all
the steps of execution until an obstacle free path is found.

Finally, the returned paths should be joined; this is performed by the function
JoinSegments. It returns the path to reach the target point avoiding obstacles.
Figure 6 shows an example of a game situation in which the algorithm performed
recursion twice.

As we mentioned before, two possible subgoal points may be returned by the
function Collides, one at 90 degrees and another at −90 degrees. This means
that the obstacles will always be avoided in the same direction, either always in
the 90 degree direction, or in the other one. In order to optimize the path length,
both options are tested and the shortest path is chosen.

The Fig. 7a shows the two possible paths found by the algorithm in a scenario
with multiple obstacles. Figure 7b shows a continuous line for the trajectory to
be followed.

Finally, at Fig. 8 we present the solution found by the algorithm in a sample
random scenario with multiple obstacles.

4 Results and Evaluation

The evaluation and comparison of the algorithms involved three different met-
rics. Namely, processing time required for the path generation, path smoothness
and total path length. Additionally, a weighted sum evaluation (Eq. 1) of the
trajectories was made according to Xiao’s proposal [11] with some modifica-
tions, where Wt,Ws and Wd are the weights assigned to each criterion according
to the desired relevance of processing time, smoothness and distance traveled
respectively.



412 S. Rodŕıguez et al.

Fig. 5. The figures show the recursive steps of the algorithm. At each step, the black
line shows the computed straight path and the magenta segments denote the alternative
route to avoid the found obstacle. After computing an alternative route, the algorithm
is applied over it, recursively (Color figure online).

Fig. 6. Example of the proposed algorithm with recursion

Fig. 7. (a) Possible paths (b) Path selection

Fig. 8. Solution found by the algorithm in a random scenario with multiple obstacles



Fast Path Planning Algorithm for the RoboCup Small Size League 413

Eval(p) = Wttime(p) + Wddist(p) + Wssmooth(p) (1)

We define time, smooth and dist as:

– time(p), processing time
– dist(p) =

∑n−1
i=1 d(mi,mi+1), total path length, where d(mi,mi+1) is the dis-

tance between two adjacent nodes mi and mi+1.
– smooth(p) measures the smoothness of the path, defined as

smooth(p) =
∑

θi
dist(p)

where θi is the angle between adjacent segments of the route.

According to Eq. 1, smaller Eval(p) values represent better performance mea-
sures. In addition, for the case of Small Size League, we assign more relevance
to processing time Wt = 0.5, next in significance the smoothness Ws = 0.3 and
finally the path length Wd = 0.2. As time, smooth and dist variables must be
normalized, we normalized each variable using the higher value obtained for it
from both RRT and the proposed algorithm.

The algorithm evaluation process was performed in two parts. The first one
involves static random scenarios and second one includes real game dynamic
environments taken from the RoboCup 2013 contest.

4.1 Part 1: Static Scenario

We consider two different game cases and for each one we generate 100 paths
using the RRT algorithm. From these paths, we take average values of each one
of the three criteria and then we compare with the trajectory generated by the
proposed algorithm in the same case. We did not run our algorithm several times,
since it would generate the same result every time, as it is not randomized.

Case 1. Figure 9a shows the trajectories generated by both algorithms in the
shortest time. According to criterion 1 (processing time), the path generated the
faster by RRT algorithm took less time than our proposal’s. Figure 9b shows
processing time for the 100 trajectories generated by RRT (green), their average
(blue) and the time spent by the proposed algorithm (red). The obtained results
are shown in Table 1.

Regarding the second criterion (smoothness of the path), Fig. 10 and Table 2
exhibit the results obtained for the same case. Last, in Fig. 11 and Table 3 we
show the results according to the third criterion (path length).

The performance evaluation of this case is shown in Table 4. The path gen-
erated by the proposed algorithm is 3.4 times better than the average of those
generated by RRT.



414 S. Rodŕıguez et al.

Fig. 9. (a) Proposal and RRT algorithm (Path that took less time to create). (b)
Results Case 1, Criterion 1 (Process time) (Color figure online)

Table 1. Case 1 results: processing time analysis

Case 1, Criterion 1 (time)

Algorithm Minimum(ms) Maximum(ms) Mean(ms)

RRT 0.4223 40.3556 4.7193

PROPOSAL 0.5303 0.5303 0.5303

Fig. 10. (a) Proposal and RRT algorithm (smoother path). (b) Results Case 1, Crite-
rion 2 (path smoothness)

Table 2. Case 1 results: smoothness analysis of path

Case 1, Criterion 2 (smoothness)

Algorithm Minimum(rad/m) Maximum(rad/m) Mean(rad/m)

RRT 2.378 5.148 3.668

PROPOSAL 0.3447 0.3447 0.3447

Fig. 11. (a) Proposal and RRT algorithm (shortest path). (b) Results Case 1, Criterion
3 (Path length)



Fast Path Planning Algorithm for the RoboCup Small Size League 415

Table 3. Case 1 results: path length analysis

Case 1, Criterion 3 (length)

Algorithm Minimum(mm) Maximum(mm) Mean(mm)

RRT 3780 8267 4667

PROPOSAL 3569 3569 3569

Table 4. Case 1 results: weighted performance evaluation

Case 1, Evaluation

Algorithm Time(p) Smooth(p) Dist(p) Eval(p)

RRT 0.116 0.712 0.564 0.385

PROPOSAL 0.013 0.066 0.431 0.113

Fig. 12. Case 2. (a) Fastest generated path. (b) Smoother path. (c) Shortest path

Case 2. Figure 12 shows the second case, with (a) the fastest generated path by
RRT, (b) the smoothest and (c) the shortest in length. All the results for this
case are shown in Table 5.

The evaluation of this case is shown in Table 6. We observe that for this game
situation, the proposed algorithm is 3 times better than RRT.

4.2 Part 2: Dynamic Scenario

For this case, we took data from a segment of one game of RoboCup 2013
(STOx’s vs CMDragons). There are 281 continuous scenarios in total and for
each one we generated trajectories using both RRT and the proposed algorithm.
Full data of this match can be obtained from [12] and a video showing the
segment can be found in [13].

The obtained results are shown in Fig. 13. This graphic presents (a) process-
ing times for the 281 trajectories for both algorithms, (b) the smoothness and
(c) distance traveled. Table 7, consolidates results obtained from both algorithms.

Finally, Table 8 shows the evaluation of both algorithms for the dynamic
scenario and results indicate that the average of the proposed algorithm perfor-
mance is 2.4 times better than RRT’s.



416 S. Rodŕıguez et al.

Table 5. Case 2 results

Case 2

Criterion Algorithm Minimum Maximum Mean

Time(ms) RRT 1.710 68.3259 17.7726

PROPOSAL 0.6523 0.6523 0.6523

Smooth(rad/m) RRT 2.143 4.131 31.708

PROPOSAL 0.3234 0.3234 0.3234

Dist(mm) RRT 4842 7647 5776

PROPOSAL 4883 4883 4883

Table 6. Case 2 results: evaluation

Case 2, Evaluation

Algorithm Time(p) Smooth(p) Dist(p) Eval(p)

RRT 0.260 0.768 0.755 0.511

PROPOSAL 0.010 0.078 0.639 0.156

Table 7. Dynamic scenario results

Dynamic scenario

Criterion Algorithm Minimum Maximum Mean

Time(ms) RRT 1.16 35.595 7.891

PROPOSAL 0.052 15.051 1.494

Smooth(rad/m) RRT 1.398 6.178 2.546

PROPOSAL 0.001 0.871 0.149

Dist(mm) RRT 6062 9445 8310

PROPOSAL 6344 7199 6728

Table 8. Dynamic scenario evaluation

Case 1, Evaluation

Algorithm Time(p) Smooth(p) Dist(p) Eval(p)

RRT 0.222 0.412 0.880 0.410

PROPOSAL 0.042 0.024 0.712 0.171



Fast Path Planning Algorithm for the RoboCup Small Size League 417

Fig. 13. Dynamic Scenario. (a) Time results. (b) Smooth results. (c) Dist results.

5 Conclusions

We consider RRT to be a robust and flexible algorithm when applied to path
planning. However, we observe that its generality can turn into its own weakness,
when aspects like processing time or path smoothness are critical. Thus, we have
proposed an ad-hoc heuristic for path planning in non-cluttered dynamic envi-
ronments. We have tested our approach over a set of artificial and real RoboCup
Small Size League situations, and we have found it finds smoother and shorter
paths faster in the average case.

It is clear that the good performance of the proposed algorithm is related
with the constraints of the environment where we apply it. However, we claim
that the characteristics of the SSL league with regards to path planning are
similar to many other planning situations, e.g. autonomous car driving.

When testing the proposed heuristic, we have found that it outperforms the
RRT implemented version by approximately 30% on average, using the proposed
metrics. Additionally, we have also observed that the proposal outperforms RRT
in all three individual metrics, i.e. path length, smoothness and processing time.

After competition in RoboCup 2013, we can assert that the proposed algo-
rithm generated paths avoiding obstacles and also processed all necessary data
in real time, which was crucial to be among the top eight teams in the SSL.

6 Future Work

We propose to test the new algorithm on more complex environments to assess
the validity of our claims regarding the applicability of our heuristic.

According with the outcomes of these tests, we will modify algorithm to make
it more robust.

We also acknowledge the need to compare this algorithms with newer and
improved versions of RRT-based path planners. Future work will include these
comparisons.

Integrating the robots dynamics information into the planning process is also
our priority. We believe that this is crucial to close the gap between the planned
paths and the actual navigated ones, as well as to reach optimal plans.



418 S. Rodŕıguez et al.

Acknowledgements. This work has been funded by “Octava Convocatoria Interna de
Proyectos de Investigación FODEIN 2014 #049” at Universidad Santo Tomás Colom-
bia, entitled “Construcción de un enjambre de robots omnidireccionales”. Many thanks
to Martin Llofriu for his comments and suggestions on the work presented here.

References

1. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot
world cup initiative. In: Proceedings of IJCAI-95 Workshop on Entertainment and
AI/Alife, pp. 340–347. IEEE Press, Montreal (1995)

2. RoboCup Information. http://www.robocup2013.org/about-robocup/
3. Small Size Legue Information. http://robocupssl.cpe.ku.ac.th/rules:main
4. Ould-Khessal, N.: Botnia: a team of soccer plating robots. In: 2nd International

Conference on Autonomous Robots and Agents, pp. 429–433. Palmerston North
(2004)

5. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Tech-
nical report No. 98–11 (1998)

6. Tsubouchi, T., Arimoto, S.: Behaviour of a mobile robot navigated by an iterated
forecast and planning scheme in the presence of multiple moving obstacles. In:
1994 IEEE International Conference on Robotics and Automation, pp. 2470–2475.
IEEE Press, San Diego (1994)

7. Han, K., Veloso, M.: Reactive visual control of multiple non-holonomic robotic
agents. In: 1998 IEEE International Conference on Robotics and Automation, pp.
3510–3515. IEEE Press, Leuven (1998)

8. Kuffner, J.J., LaValle, S.M.: Rapidly-exploring random trees: progress and
prospects. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Compu-
tational Robotics: New Directions, pp. 293–308. AK Peters, Massachusetts (2001)

9. Bruce, J., Veloso, M.M.: Real-time randomized motion planning for multiple
domains. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.)
RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 532–539.
Springer, Heidelberg (2007)

10. Desaraju, V.R., How, J.P.: Decentralized path planning for multi-agent teams in
complex environments using rapidly-exploring random trees. In: 2011 IEEE Inter-
national Conference on Robotics and Automation, pp. 4956–4961. IEEE Press,
Shanghai (2011)

11. Xiao, J., Michalewicz, Z., Zhang, L., Trojanowski, K.: Adaptive evolutionary plan-
ner/navigator for mobile robots. IEEE Transact. Evol. Comput. 1, 18–28 (1997)

12. Log of Quaterfinal4 Small Size League RoboCup 2013. http://er-force.de/
gamelogs/robocup2013/2013-06-29-165351 stoxs cmdragons.log.gz

13. STOx’s Team webpage. http://www.stoxs.org/index.php/en/projects/robocup-ssl-
2/86-english-categories/stox-s-english/168-fast-path-planning-algorithm-en

http://www.robocup2013.org/about-robocup/
http://robocupssl.cpe.ku.ac.th/rules:main
http://er-force.de/gamelogs/robocup2013/2013-06-29-165351_stoxs_cmdragons.log.gz
http://er-force.de/gamelogs/robocup2013/2013-06-29-165351_stoxs_cmdragons.log.gz
http://www.stoxs.org/index.php/en/projects/robocup-ssl-2/86-english-categories/stox-s-english/168-fast-path-planning-algorithm-en
http://www.stoxs.org/index.php/en/projects/robocup-ssl-2/86-english-categories/stox-s-english/168-fast-path-planning-algorithm-en

	Fast Path Planning Algorithm for the RoboCup Small Size League
	1 Introduction
	2 Related Work
	3 Proposal
	4 Results and Evaluation
	4.1 Part 1: Static Scenario
	4.2 Part 2: Dynamic Scenario

	5 Conclusions
	6 Future Work
	References


