Skip to main content

Genetics and the Blood Pressure Response to Exercise Training

  • Chapter
Effects of Exercise on Hypertension

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1783 Accesses

Abstract

Regular physical activity is an effective and safe way to prevent development of hypertension and to lower elevated resting blood pressure. However, there are considerable inter-individual differences in blood pressure responses to exercise training, ranging from marked decreases to no changes to considerable increases. Family and twin studies have shown that blood pressure responses to exercise aggregate in families with heritability estimates ranging mainly from 20 to 40 %. While heritability of blood pressure training responses has been established, little progress has been made in terms of characterizing the molecular genetic basis of the blood pressure responses to exercise training. Several candidate genes have been tested for associations with exercise blood pressure phenotypes, but none of these associations has been confirmed in subsequent studies. The main problem with molecular genetic studies of health-related phenotype responses such as blood pressure to exercise training is the limited number of appropriate studies available and the small sample sizes of the individual studies, leading to lack of statistical power and inability to replicate potential leads. It is possible that emerging new approaches based on “omics” technology (e.g., genomics, transcriptomics, proteomics, metabolomics, epigenomics, and bioinformatics) will eventually lead to a better understanding of the inter-individual variation in the BP response to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Blood pressure

DBP:

Diastolic blood pressure

DNA:

Deoxyribonucleic acid

END1 :

Endothelin-1

HERITAGE:

HEalth RIsk Factors, Exercise TRAining and GEnetics Family Study

GWAS:

Genome-wide association studies

SBP:

Systolic blood pressure

SD:

Standard deviation

SNP:

Single nucleotide polymorphism

References

  1. Morris JN, Heady JA. Mortality in relation to the physical activity of work: a preliminary note on experience in middle age. Br J Ind Med. 1953;10:245–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet. 1953;262:1111–20.

    Article  Google Scholar 

  3. Taylor HL, Klepetar E, Keys A, Parlin W, Blackburn H, Puchner T. Death rates among physically active and sedentary employees of the railroad industry. Am J Public Health Nations Health. 1962;52:1697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paffenbarger Jr RS, Laughlin ME, Gima AS, Black RA. Work activity of longshoremen as related to death from coronary heart disease and stroke. N Engl J Med. 1970;282:1109–14.

    Article  PubMed  Google Scholar 

  5. Paffenbarger Jr RS, Wing AL, Hyde RT. Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol. 1978;108:161–75.

    PubMed  Google Scholar 

  6. Wilmore JH, Stanforth PR, Gagnon J, et al. Heart rate and blood pressure changes with endurance training: The HERITAGE Family Study. Med Sci Sports Exerc. 2001;33:107–16.

    Article  CAS  PubMed  Google Scholar 

  7. Bray MS, Hagberg JM, Perusse L, et al. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009;41:37–72.

    Article  Google Scholar 

  8. Hagberg JM, Rankinen T, Loos RJ, et al. Advances in exercise, fitness, and performance genomics in 2010. Med Sci Sports Exerc. 2011;43:743–52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perusse L, Rankinen T, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2002 update. Med Sci Sports Exerc. 2003;35(8):1248–64.

    Article  CAS  PubMed  Google Scholar 

  10. Rankinen T, Bray MS, Hagberg JM, et al. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc. 2006;38:1863–88.

    Article  PubMed  Google Scholar 

  11. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc. 2001;33:855–67.

    Article  CAS  PubMed  Google Scholar 

  12. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2001 update. Med Sci Sports Exerc. 2002;34:1219–33.

    Article  CAS  PubMed  Google Scholar 

  13. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc. 2004;36:1451–69.

    Article  PubMed  Google Scholar 

  14. Rankinen T, Roth SM, Bray MS, et al. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc. 2010;42:835–46.

    Article  PubMed  Google Scholar 

  15. Wolfarth B, Bray MS, Hagberg JM, et al. The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med Sci Sports Exerc. 2005;37(6):881–903.

    CAS  PubMed  Google Scholar 

  16. Perusse L, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2012. Med Sci Sports Exerc. 2013;45:824–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roth SM, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc. 2012;44:809–17.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolfarth B, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2013. Med Sci Sports Exerc. 2014;46:851–9.

    Article  CAS  PubMed  Google Scholar 

  19. Williams RR, Hunt SC, Hasstedt SJ, et al. Are there interactions and relations between genetic and environmental factors predisposing to high blood pressure? Hypertension. 1991;18:I29–37.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng LS, Carmelli D, Hunt SC, Williams RR. Evidence for a major gene influencing 7-year increases in diastolic blood pressure with age. Am J Hum Genet. 1995;57:1169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng LS, Livshits G, Carmelli D, Wahrendorf J, Brunner D. Segregation analysis reveals a major gene effect controlling systolic blood pressure and BMI in an Israeli population. Hum Biol. 1998;70:59–75.

    CAS  PubMed  Google Scholar 

  22. Perusse L, Moll PP, Sing CF. Evidence that a single gene with gender- and age-dependent effects influences systolic blood pressure determination in a population-based sample. Am J Hu Genet. 1991;49:94–105.

    CAS  Google Scholar 

  23. Cheng LS, Carmelli D, Hunt SC, Williams RR. Segregation analysis of cardiovascular reactivity to laboratory stressors. Genet Epidemiol. 1997;14:35–49.

    Article  CAS  PubMed  Google Scholar 

  24. van den Bree MB, Schieken RM, Moskowitz WB, Eaves LJ. Genetic regulation of hemodynamic variables during dynamic exercise. The MCV twin study. Circulation. 1996;94:1864–9.

    Article  PubMed  Google Scholar 

  25. An P, Rice T, Perusse L, et al. Complex segregation analysis of blood pressure and heart rate measured before and after a 20-week endurance exercise training program: The HERITAGE Family Study. Am J Hypertens. 2000;13:488–97.

    Article  CAS  PubMed  Google Scholar 

  26. An P, Perusse L, Rankinen T, et al. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE Family Study. Int J Sports Med. 2003;24:57–62.

    Article  CAS  PubMed  Google Scholar 

  27. Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–80.

    Article  CAS  PubMed  Google Scholar 

  28. Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51:197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71:169–80.

    Article  CAS  PubMed  Google Scholar 

  30. Fukamizu A, Takahashi S, Seo MS, et al. Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter. J Biol Chem. 1990;265:7576–82.

    CAS  PubMed  Google Scholar 

  31. Montgomery HE, Clarkson P, Dollery CM, et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation. 1997;96:741–7.

    Article  CAS  PubMed  Google Scholar 

  32. Myerson SG, Montgomery HE, Whittingham M, et al. Left ventricular hypertrophy with exercise and ace gene insertion/deletion polymorphism: a randomized controlled trial with losartan. Circulation. 2001;103:226–30.

    Article  CAS  PubMed  Google Scholar 

  33. Rankinen T, Church T, Rice T, et al. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension. 2007;50:1120–5.

    Article  CAS  PubMed  Google Scholar 

  34. Wellcome Trust Case-Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  35. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rankinen T, Zuberi A, Chagnon YC, et al. The human obesity gene map: the 2005 update. Obesity. 2006;14:529–644.

    Article  PubMed  Google Scholar 

  39. Wood AR, Esko T, Yang J, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.

    Article  CAS  PubMed  Google Scholar 

  41. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33:S438–45; discussion S452–433.

    Article  CAS  PubMed  Google Scholar 

  42. Pescatello LS, Kulikowich JM. The after effects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc. 2001;33:1855–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Rankinen Ph.D., F.A.C.S.M., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rankinen, T. (2015). Genetics and the Blood Pressure Response to Exercise Training. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_10

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics