Skip to main content

Polyanion Compounds as Cathode Materials for Li-Ion Batteries

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The development of high energy density Li-ion batteries depends on finding electrode materials that can meet increasingly stringent demands, in particular cathode materials (Goodenough and Kim in Chem Mater 22:587–603, 2010; Tarascon and Armand in Nature 414:359–367, 2001). Cathodes are not only the primary factor producing the working potential of Li-ion batteries, but also determine the number of Li ions (i.e., the practical capacity) which can be utilized. Due to LiFePO4 having succeeded as a prime example of high powered Li-ion battery material, polyanion-type compounds have attracted wide interests in the field of cathode research for the last two decades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Google Scholar 

  3. Manthiram A, Goodenough JB (1987) Lithium insertion into Fe2(MO4)3 frameworks—comparison of M = W with M = Mo. J Solid State Chem 71:349–360

    Google Scholar 

  4. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sources 26:403–408

    Google Scholar 

  5. Gong ZL, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energ Environ Sci 4:3223–3242

    Google Scholar 

  6. Masquelier C, Croguennec L (2013) Polyanionic (Phosphates, Silicates, Sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591

    Google Scholar 

  7. Eames C, Armstrong AR et al (2012) Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem Mater 24:2155–2161

    Google Scholar 

  8. Nyten A, Abouimrane A et al (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Google Scholar 

  9. Armand M, Michot C, Ravet N et al (2000) US Patent, 6,085,015

    Google Scholar 

  10. Arroyoy de Dompablo ME, Armand M et al (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn Co, Ni). Electrochem Commun 8:1292–1298

    Google Scholar 

  11. Lyness C, Delobel B et al (2007) The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. Chem Commun 4890–4892

    Google Scholar 

  12. Dominko R, Bele M et al (2007) Li2MnSiO4 as a potential Li-battery cathode material. J Power Sources 174:457–461

    Google Scholar 

  13. Gong ZL, Li YX et al (2007) Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries. J Power Sources 174:524–527

    Google Scholar 

  14. Prakash AS, Rozier P et al (2006) Electrochemical reactivity of Li2VOSiO4 toward Li. Chem Mater 18:407–412

    Google Scholar 

  15. Sirisopanaporn C, Masquelier C et al (2011) Dependence of Li2FeSiO4 electrochemistry on structure. J Am Chem Soc 133:1263–1265

    Google Scholar 

  16. Nishimura SI, Hayase S et al (2008) Structure of Li2FeSiO4. J Am Chem Soc 130:13212–13213

    Google Scholar 

  17. Boulineau A, Sirisopanaporn C et al (2010) Polymorphism and structural defects in Li2FeSiO4. Dalton T 39:6310–6316

    Google Scholar 

  18. Sirisopanaporn C, Boulineau A et al (2010) Crystal structure of a new polymorph of Li2FeSiO4. Inorg Chem 49:7446–7451

    Google Scholar 

  19. Armstrong AR, Kuganathan N et al (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133:13031–13035

    Google Scholar 

  20. Kojima A, Kojima T et al (2012) Crystal structure and electrochemical performance of a new lithium trivalent iron silicate. J Electrochem Soc 159:A725–A729

    Google Scholar 

  21. Gummow RJ, He Y (2014) Recent progress in the development of Li2MnSiO4 cathode materials. J Power Sources 253:315–331

    Google Scholar 

  22. Dominko R, Bele M et al (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222

    Google Scholar 

  23. Arroyoy de Dompablo ME, Dominko R et al (2008) On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs. Chem Mater 20:5574–5584

    Google Scholar 

  24. Gummow RJ, Sharma N et al (2012) Crystal chemistry of the Pmnb polymorph of Li2MnSiO4. J Solid State Chem 188:32–37

    Google Scholar 

  25. Politaev VV, Petrenko AA et al (2007) Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4. J Solid State Chem 180:1045–1050

    Google Scholar 

  26. Mali G, Meden A et al (2010) Li-6 MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chem Commun 46:3306–3308

    Google Scholar 

  27. Arroyoy de Dompablo ME, Amador U et al (2009) Polymorphs of Li3PO4 and Li2MSiO4 (M = Mn, Co) the role of pressure. J Power Sources 189:638–642

    Google Scholar 

  28. Kobayashi G, Nishimura SI et al (2009) Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv Funct Mater 19:395–403

    Google Scholar 

  29. Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sources 184:462–468

    Google Scholar 

  30. Kokalj A, Dominko R et al (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1−xSiO4. Chem Mater 19:3633–3640

    Google Scholar 

  31. Nyten A, Kamali S et al (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16:2266–2272

    Google Scholar 

  32. Muraliganth T, Stroukoff KR et al (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761

    Google Scholar 

  33. Dominko R, Conte DE et al (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources 178:842–847

    Google Scholar 

  34. Lv DP, Wen W et al (2011) A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J Mater Chem 21:9506–9512

    Google Scholar 

  35. Bai JY, Gong ZL et al (2012) Nanostructured 0.8Li(2)FeSiO(4)/0.4Li(2)SiO(3)/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem 22:12128–12132

    Google Scholar 

  36. Gong ZL, Li YX et al (2006) Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State 9:A542–A544

    Google Scholar 

  37. Lv DP, Bai JY et al (2013) Understanding the high capacity of Li2FeSiO4: in situ XRD/XANES study combined with first-principles calculations. Chem Mater 25:2014–2020

    Google Scholar 

  38. Belharouak I, Abouimrane A et al (2009) Structural and electrochemical characterization of Li2MnSiO4 cathode material. J Phys Chem C 113:20733–20737

    Google Scholar 

  39. Li LM, Guo HJ et al (2009) Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J Power Sources 189:45–50

    Google Scholar 

  40. Bao LY, Gao W et al (2013) Progression of the silicate cathode materials used in lithium ion batteries. Chinese Sci Bull 58:575–584

    Google Scholar 

  41. Pizarrosanz JL, Dance JM et al (1994) The natural and synthetic tavorite minerals—crystal-chemistry and magnetic-properties. Mater Lett 18:327–330

    Google Scholar 

  42. Mba JMA, Croguennec L et al (2012) Lithium insertion or extraction from/into tavorite-type LiVPO4F: an in situ X-ray diffraction study. J Electrochem Soc 159:A1171–A1175

    Google Scholar 

  43. Barker J, Gover RKB et al (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 146:516–520

    Google Scholar 

  44. Sun XF, Xu YL et al (2013) High performance LiV0.96Mn0.04PO4F/C cathodes for lithium-ion batteries. J Mater Chem A 1:2501–2507

    Google Scholar 

  45. Xiao PF, Lai MO et al (2013) Transport and electrochemical properties of high potential tavorite LiVPO4F. Solid State Ionics 242:10–19

    Google Scholar 

  46. Zhou F, Zhao XM et al (2009) Reactivity of charged LiVPO4F with 1 M LiPF6 EC: DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochem Commun 11:589–591

    Google Scholar 

  47. Tarascon JM (2010) Key challenges in future Li-battery research. Philos Trans R Soc A 368:3227–3241

    Google Scholar 

  48. Dutreilh M, Chevalier C et al (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphate Li-2[NiF(PO4)] with an ordered mixed anionic framework. J Solid State Chem 142:1–5

    Google Scholar 

  49. Ellis BL, Makahnouk WRM et al (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753

    Google Scholar 

  50. Ellis BL, Makahnouk WRM et al (2010) Crystal structure and electrochemical properties of A(2)MPO(4)F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070

    Google Scholar 

  51. Nagahama M, Hasegawa N et al (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 157:A748–A752

    Google Scholar 

  52. Okada S, Ueno M et al (2005) Fluoride phosphate Li2COPO4F as a high-voltage cathode in Li-ion batteries. J Power Sources 146:565–569

    Google Scholar 

  53. Wu XB, Zheng JM et al (2011) Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1-xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J Mater Chem 21:18630–18637

    MathSciNet  Google Scholar 

  54. Yakubovich OV, Karimova OV et al (1997) The mixed anionic framework in the structure of Na2{MnF[PO4]}. Acta Crystallogr C 53:395–397

    Google Scholar 

  55. Kabalov YK, Simonov MA et al (1974) Crystalline-structure of basic iron ortho-phosphate, Na2Fe [PO4](Oh). Dokl Akad Nauk SSSR 215:850–853

    Google Scholar 

  56. Swafford SH, Holt EM (2002) New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg(PO4)F and Sr5(PO4)(3)F. Solid State Sci 4:807–812

    Google Scholar 

  57. Sanz F, Parada C et al (2001) Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate. J Mater Chem 11:208–211

    Google Scholar 

  58. Kim SW, Seo DH et al (2012) A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. Phys Chem Chem Phys 14:3299–3303

    Google Scholar 

  59. Lin XC, Hou X et al (2014) Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Adv 4:40985–40993

    Google Scholar 

  60. Zheng Y, Zhang P et al (2013) First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries. J Electrochem Soc 160:A927–A932

    Google Scholar 

  61. Recham N, Chotard JN et al (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156:A993–A999

    Google Scholar 

  62. Kosova NV, Devyatkina ET et al (2012) In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling. Investigation of its local structure and electrochemical properties. Solid State Ionics 225:570–574

    Google Scholar 

  63. Wang DY, Xiao J et al (2011) Preparation and electrochemical investigation of Li2CoPO4F cathode material for lithium-ion batteries. J Power Sources 196:2241–2245

    Google Scholar 

  64. Amaresh S, Kim GJ et al (2012) Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling. Phys Chem Chem Phys 14:11904–11909

    Google Scholar 

  65. Wu XB, Gong ZL et al (2012) Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. J Power Sources 220:122–129

    Google Scholar 

  66. Amaresh S, Karthikeyan K et al (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sources 244:395–402

    Google Scholar 

  67. Wu XB, Wang SH et al (2014) Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface. J Mater Chem A 2:1006–1013

    Google Scholar 

  68. Khasanova NR, Gavrilov AN et al (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sources 196:355–360

    Google Scholar 

  69. Vitins G, Kanepe Z et al (2000) Structural and conductivity studies in LiFeP2O7, LiScP2O7, and NaScP2O7. J Solid State Electr 4:146–152

    Google Scholar 

  70. Padhi AK, Nanjundaswamy KS et al (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Google Scholar 

  71. Ramana CV, Ait-Salah A et al (2007) Novel lithium iron pyrophosphate (LiFe1.5P2O7) as a positive electrode for Li-ion batteries. Chem Mater 19:5319–5324

    Google Scholar 

  72. Nishimura S, Nakamura M et al (2010) New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J Am Chem Soc 132:13596–13597

    Google Scholar 

  73. Kim H, Lee S et al (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2−xMP2O7 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3937

    Google Scholar 

  74. Shimizu D, Nishimura S et al (2012) Electrochemical redox mechanism in 3.5 V Li2−xFeP2O7 (0 ≤ x ≤ 1) pyrophosphate cathode. Chem Mater 24:2598–2603

    Google Scholar 

  75. Du J, Jiao LF et al (2013) Synthesis and characterization of Li2FeP2O7/C nanocomposites as cathode materials for Li-ion batteries. Electrochim Acta 103:219–225

    Google Scholar 

  76. Barpanda P, Ye T et al (2012) Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors. J Mater Chem 22:13455–13459

    Google Scholar 

  77. Clark JM, Nishimura S et al (2012) High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew Chem Int Edit 51:13149–13153

    Google Scholar 

  78. Lee S, Park SS (2012) Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater 24:3550–3557

    Google Scholar 

  79. Barpanda P, Rousse G et al (2013) Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7. Inorg Chem 52:3334–3341

    Google Scholar 

  80. Adam L, Guesdon A et al (2008) A new lithium manganese phosphate with an original tunnel structure in the A(2)MP(2)O(7) family. J Solid State Chem 181:3110–3115

    Google Scholar 

  81. Tamaru M, Barpanda P et al (2012) Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode. J Mater Chem 22:24526–24529

    Google Scholar 

  82. Zhou H, Upreti S et al (2011) Iron and manganese pyrophosphates as cathodes for lithium-ion batteries. Chem Mater 23:293–300

    Google Scholar 

  83. Furuta N, Nishimura S et al (2012) Fe3+/Fe2+ redox couple approaching 4 V in Li2−x(Fe1−yMny)P2O7 pyrophosphate cathodes. Chem Mater 24:1055–1061

    Google Scholar 

  84. Ye T, Barpanda P et al (2013) General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate solid-solution cathodes. Chem Mater 25:3623–3629

    Google Scholar 

  85. Shakoor RA, Kim H et al (2012) Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study. J Am Chem Soc 134:11740–11748

    Google Scholar 

  86. Tamaru M, Chung SC et al (2013) Pyrophosphate chemistry toward safe rechargeable batteries. Chem Mater 25:2538–2543

    Google Scholar 

  87. Kim H, Park I et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372

    Google Scholar 

  88. Hautier G, Jain A et al (2011) Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 21:17147–17153

    Google Scholar 

  89. Chen HL, Hautier G et al (2012) Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc 134:19619–19627

    Google Scholar 

  90. Huang H, Yin SC et al (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State 4:A170–A172

    Google Scholar 

  91. Yamada A, Chung SC et al (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Google Scholar 

  92. Chen HL, Hautier G et al (2012) Carbonophosphates: a new family of cathode materials for li-ion batteries identified computationally. Chem Mater 24:2009–2016

    Google Scholar 

  93. Arora P, White RE et al (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc 145:3647–3667

    Google Scholar 

  94. Matts I, Chen HL et al (2013) Electrochemical properties of Li3Fe0.2Mn0.8CO3PO4 as a Li-ion battery cathode. ECS Electrochem Lett 2:A81–A83

    Google Scholar 

  95. Melot BC, Tarascon JM (2013) Design and preparation of materials for advanced electrochemical storage. Acc Chem Res 46:1226–1238

    Google Scholar 

  96. Padhi AK, Nanjundaswamy KS et al (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Google Scholar 

  97. Barpanda P, Ati M et al (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:772–779

    Google Scholar 

  98. Reynaud M, Ati M et al (2012) Li2Fe(SO4)(2) as a 3.83 V positive electrode material. Electrochem Commun 21:77–80

    Google Scholar 

  99. Touboul M, Edern P et al (1992) Li2SO4-MSO4 (M = Co, Ni) phase-diagrams and considerations about alpha-Li2-2xMxSO4 solid-solutions and Li2My(SO4)1+y compounds (M: divalent ions). Solid State Ionics 50:323–328

    Google Scholar 

  100. Touboul M, Lesamedi E et al (1993) Binary-systems with Li2SO4 as one of the components. J Therm Anal 40:1151–1156

    Google Scholar 

  101. Reynaud M, Ati M et al (2013) Bimetallic sulfates A(2)M(SO4)(2) center dot nH(2)O (A = Li, Na and M = transition metal) as new attractive electrode materials for Li- and Na-ion batteries. ECS Trans 50:11–19

    Google Scholar 

  102. Reynaud M, Rousse G et al (2013) Marinite Li2M(SO4)2 (M = Co, Fe, Mn) and Li1Fe(SO4)2: model compounds for super-super-exchange magnetic interactions. Inorg Chem 52:10456–10466

    Google Scholar 

  103. Rousse G, Tarascon JM (2014) Sulfate-based polyanionic compounds for li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem Mater 26:394–406

    Google Scholar 

  104. Frayret C, Villesuzanne A et al (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522

    Google Scholar 

  105. Ben Yahia M, Lemoigno F et al (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energ Environ Sci 5:9584–9594

    Google Scholar 

  106. Bertaut EF, Buisson G et al (1967) Structure magnetique et proprietes magnetiques de BiMn2O5. Solid State Commun 5:25–30

    Google Scholar 

  107. El Khayati N, El Moursli RC et al (2001) Crystal and magnetic structures of the oxyphosphates MFePO5 (M = Fe Co, Ni, Cu). Analysis of the magnetic ground state in terms of superexchange interactions. Eur Phys J B 22:429–442

    Google Scholar 

  108. Recham N, Chotard JN et al (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–74

    Google Scholar 

  109. Padhi AK, Manivannan V et al (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520

    Google Scholar 

  110. Sebastian L, Gopalakrishnan J et al (2002) Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:374–377

    Google Scholar 

  111. Ramzan M, Lebegue S et al (2011) Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J Phys Chem C 115:2600–2603

    Google Scholar 

  112. Ati M, Melot BC et al (2011) Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem Commun 13:1280–1283

    Google Scholar 

  113. Liu L, Zhang B et al (2011) A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog Nat Sci 21:211–215

    Google Scholar 

  114. Dong JP, Yu XQ et al (2013) Trip lite LiFeSO4F as cathode material for Li-ion batteries. J Power Sources 244:716–720

    Google Scholar 

  115. Tripathi R, Popov G et al (2012) Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energ Environ Sci 5:6238–6246

    Google Scholar 

  116. Radha AV, Furman JD et al (2012) Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−xMnxSO4F (0 ≤ x ≤ 1) polymorphs. J Mater Chem 22:24446–24452

    Google Scholar 

  117. Ati M, Melot BC et al (2011) Structural and electrochemical diversity in LiFe1-delta Zn delta SO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angew Chem Int Edit 50:10574–10577

    Google Scholar 

  118. Tripathi R, Popov G et al (2013) Ultra-rapid microwave synthesis of triplite LiFeSO4F. J Mater Chem A 1:2990–2994

    Google Scholar 

  119. Debart A, Revel B et al (2003) Study of the reactivity mechanism of M3B2O6 (with M = Co, Ni, and Cu) toward lithium. Chem Mater 15:3683–3691

    Google Scholar 

  120. Kawano T, Suehiro T et al (2010) Preparation, crystal structure and photoluminescence of Mn2+-doped magnesium pyroborates solid solutions, (Mg1−xMnx)(2)B2O5. J Lumin 130:2161–2165

    Google Scholar 

  121. Legagneur V, An Y et al (2001) LiMBO3 (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 139:37–46

    Google Scholar 

  122. Okada S, Tonuma T et al (2003) Anode properties of calcite-type MBO3 (M: V, Fe). J Power Sources 119:621–625

    Google Scholar 

  123. Rowsell JLC, Gaubicher J et al (2001) A new class of materials for lithium-ion batteries: iron(III) borates. J Power Sources 97–8:254–257

    Google Scholar 

  124. Yamada A, Iwane N et al (2010) Lithium iron borates as high-capacity battery electrodes. Adv Mater 22:3583–3587

    Google Scholar 

  125. Bo SH, Wang F et al (2012) Degradation and (de)lithiation processes in the high capacity battery material LiFeBO. J Mater Chem 22:8799–8809

    MathSciNet  Google Scholar 

  126. Tao L, Rousse G et al (2014) Preparation, structure and electrochemistry of LiFeBO3: a cathode material for Li-ion batteries. J Mater Chem A 2:2060–2070

    Google Scholar 

  127. Kim JC, Moore CJ et al (2011) Synthesis and electrochemical properties of monoclinic LiMnBO3 as a Li intercalation material. J Electrochem Soc 158:A309–A315

    Google Scholar 

  128. Chen L, Zhao YM et al (2010) Structure and electrochemical properties of LiMnBO3 as a new cathode material for lithium-ion batteries. J Alloy Compd 494:415–419

    Google Scholar 

  129. Afyon S, Kundu D et al (2013) Nano LiMnBO3, a high-capacity cathode material for Li-ion batteries. J Power Sources 224:145–151

    Google Scholar 

  130. Li SL, Xu LQ et al (2013) In-situ controllable synthesis and performance investigation of carbon-coated monoclinic and hexagonal LiMnBO3 composites as cathode materials in lithium-ion batteries. J Power Sources 236:54–60

    Google Scholar 

  131. Yamada A, Iwane N et al (2011) Synthesis and electrochemistry of monoclinic Li(MnxFe1−x)BO3: a combined experimental and computational study. J Mater Chem 21:10690–10696

    Google Scholar 

  132. Afyon S, Wörle M et al (2013) A lithium-rich compounds Li7Mn(BO3)3 containing Mn2+ in tetrahedral coordination: a cathode candidate for Li-ion batteries. Angew Chem Int Ed 125:12773–12776

    Google Scholar 

  133. Yamashita Y, Barpanda P et al (2013) Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V. ECS Electrochem Lett 2:A75–A77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, X.B. et al. (2015). Polyanion Compounds as Cathode Materials for Li-Ion Batteries. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics