Skip to main content

Microstructurally Composed Nanoparticle Assemblies as Electroactive Materials for Lithium-Ion Battery Electrodes

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Lithium-ion batteries are a well-established technology that has seen steady gains in performance based on materials chemistry as well as microstructure design and assembly over the past several decades. There are many material selections available when designing and assembling the device such as electro-active species, additives, and particle size/morphology to name a few. Many of the research proclamations focusing on the advantages of nanosized electrodes have yet to find commercial application, and considerable improvements in energy density and stability are still necessary in order to achieve energy storage parity. Therefore, the design and use of kinetically stabilized nanostructures should be considered. Over the past several years, significant studies have been conducted examining the synthesis and performance of heterogeneous structures. While heterogeneous structures typically refer to the combination of two or more materials, in this case it refers to architectures displaying more than one size scale (i.e., micro/nano). A great deal of recent efforts have focused on the formation and understanding of nanoparticle superstructures with a vast range of architectures. The design of microstructurally composed nanoparticle assemblies would, for instance, possess the structural and chemical stability of microsized electrodes while exploiting the beneficial properties associated with nanosized electrodes and their large specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. doi:10.1002/adma.200800627

    Google Scholar 

  2. Liu D, Cao G (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3(9):1218–1237. doi:10.1039/b922656g

    MathSciNet  Google Scholar 

  3. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430. doi:10.1016/j.jpowsour.2009.11.048

    Google Scholar 

  4. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954. doi:10.1039/c0jm04225k

    Google Scholar 

  5. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699. doi:10.1039/c0ee00699h

    Google Scholar 

  6. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2(8):1294–1305. doi:10.1039/c0nr00068j

    Google Scholar 

  7. Koziej D, Lauria A, Niederberger M (2014) 25th anniversary article: metal oxide particles in materials science: addressing all length scales. Adv Mater 26(2):235–257

    Google Scholar 

  8. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. doi:10.1002/adma.200800627

    Google Scholar 

  9. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397

    Google Scholar 

  10. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170. doi:10.1038/nbt875

    Google Scholar 

  11. Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271. doi:10.1016/j.mattod.2013.07.004

    Google Scholar 

  12. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946. doi:10.1002/anie.200702505

    Google Scholar 

  13. Arico AS, Bruce PG, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Google Scholar 

  14. Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Size-dependent lithium miscibility gap in nanoscale Li1 − x FePO4. Electrochem Solid-State Lett 10(5):A134–A138. doi:10.1149/1.2710960

    Google Scholar 

  15. Liu D, Cao GZ (2010) Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy Environ Sci 3(9):1218–1237. doi:10.1039/b922656g

    MathSciNet  Google Scholar 

  16. Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129(14):4323–4327. doi:10.1021/ja067733p

    Google Scholar 

  17. Wagemaker APMKFMM M (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418:397–399

    Google Scholar 

  18. Ganapathy S, van Eck ER, Kentgens AP, Mulder FM, Wagemaker M (2011) Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Chemistry 17(52):14811–14816. doi:10.1002/chem.201101431

    Google Scholar 

  19. Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18(11):1421–1426. doi:10.1002/adma.200502723

    Google Scholar 

  20. Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039. doi:10.1016/j.jpowsour.2006.09.084

    Google Scholar 

  21. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35. doi:http://www.nature.com/nnano/journal/v3/n1/suppinfo/nnano.2007.411_S1.html

  22. Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor MJ, Zhang J-G, Liu J (2014) Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun 5. doi:10.1038/ncomms5105

  23. Yamada A, Koizumi H, Nishimura S-i, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LixFePO4. Nat Mater 5(5):357–360. doi:http://www.nature.com/nmat/journal/v5/n5/suppinfo/nmat1634_S1.html

  24. Wagemaker M, Ellis BL, Lützenkirchen-Hecht D, Mulder FM, Nazar LF (2008) Proof of supervalent doping in olivine LiFePO4. Chem Mater 20(20):6313–6315. doi:10.1021/cm801781k

    Google Scholar 

  25. Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li[sub 1 − x]FePO[sub 4]. Electrochem Solid-State Lett 10(5):A134. doi:10.1149/1.2710960

    Google Scholar 

  26. Kobayashi G, S-i Nishimura, Park M-S, Kanno R, Yashima M, Ida T, Yamada A (2009) Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv Funct Mater 19(3):395–403. doi:10.1002/adfm.200801522

    Google Scholar 

  27. Wagemaker M, Singh DP, Borghols WJ, Lafont U, Haverkate L, Peterson VK, Mulder FM (2011) Dynamic solubility limits in nanosized olivine LiFePO4. J Am Chem Soc 133(26):10222–10228. doi:10.1021/ja2026213

    Google Scholar 

  28. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159(1):171–178. doi:10.1016/j.jpowsour.2006.04.115

    Google Scholar 

  29. Liu Y, Liu D, Zhang Q, Yu D, Liu J, Cao G (2011) Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries. Electrochim Acta 56(5):2559–2565. doi:10.1016/j.electacta.2010.11.050

    Google Scholar 

  30. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. doi:10.1002/adma.201000717

    Google Scholar 

  31. Lin F, Nordlund D, Weng T-C, Zhu Y, Ban C, Richards RM, Xin HL (2014) Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 5. doi:10.1038/ncomms4358

  32. Godshall NA, Raistrick ID, Huggins RA (1980) Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Mater Res Bull 15(5):561–570. doi:http://dx.doi.org/10.1016/0025-5408(80)90135-X

  33. Kaun TD, Nelson PA, Redey L, Vissers DR, Henriksen GL (1993) High temperature lithium/sulfide batteries. Electrochim Acta 38(9):1269–1287. doi:http://dx.doi.org/10.1016/0013-4686(93)80057-7

  34. Badway F, Mansour AN, Pereira N, Al-Sharab JF, Cosandey F, Plitz I, Amatucci GG (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141. doi:10.1021/cm070421g

  35. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Google Scholar 

  36. Débart A, Dupont L, Poizot P, Leriche J-B, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148(11):A1266–A1274. doi:10.1149/1.1409971

    Google Scholar 

  37. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5(6):895–904. doi:http://dx.doi.org/10.1016/S1293-2558(03)00114-6

  38. Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res 46(5):1104–1112. doi:10.1021/ar300176y

  39. Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M (2005) Pseudocapacitive lithium storage in TiO2(B). Chem Mater 17(5):1248–1255. doi:10.1021/cm048249t

    Google Scholar 

  40. Jiang Y-M, Wang K-X, Zhang H-J, Wang J-F, Chen J-S (2013) Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Scientific reports 3. doi:10.1038/srep03490

  41. Zhu K, Wang Q, Kim J-H, Pesaran AA, Frank AJ (2012) Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C 116(22):11895–11899. doi:10.1021/jp301884x

    Google Scholar 

  42. Wagemaker M, Mulder FM, Van der Ven A (2009) The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv Mater 21(25–26):2703–2709. doi:10.1002/adma.200803038

    Google Scholar 

  43. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc 131(39):17786–17792

    Google Scholar 

  44. Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4(1):n/a-n/a. doi:10.1002/aenm.201300787

  45. Lin F, Markus IM, Nordlund D, Weng T-C, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5. doi:10.1038/ncomms4529

  46. Ratnakumar BV, Smart MC, Surampudi S (2001) Effects of SEI on the kinetics of lithium intercalation. J Power Sources 97–98:137–139

    Google Scholar 

  47. Béguin F, Chevallier F, Vix-Guterl C, Saadallah S, Bertagna V, Rouzaud JN, Frackowiak E (2005) Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon 43(10):2160–2167. doi:10.1016/j.carbon.2005.03.041

    Google Scholar 

  48. Jo M, Hong Y-S, Choo J, Cho J (2009) Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J Electrochem Soc 156(6):A430–A434. doi:10.1149/1.3111031

    Google Scholar 

  49. Lei JL, Li LJ, Kostecki R, Muller R, McLarnon F (2005) Characterization of SEI layers on LiMn2O4 cathodes with in situ spectroscopic ellipsometry. J Electrochem Soc 152(4):A774–A777. doi:10.1149/1.1867652

    Google Scholar 

  50. Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim J-H (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117(31):15947–15957. doi:10.1021/jp405158m

  51. Jang Dong H, Shin Young J, Oh SM (1996) Dissolution of spinel oxides and capacily losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211

    Google Scholar 

  52. Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells. J Electrochem Soc 144:3342–3348

    Google Scholar 

  53. Markevich E, Salitra G, Aurbach D (2005) Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7(12):1298–1304. doi:10.1016/j.elecom.2005.09.010

    Google Scholar 

  54. Kumagai N, Komaba S, Kataoka Y, Koyanagi M (2000) Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes. Chem Lett 29(10):1154–1155. doi:10.1246/cl.2000.1154

    Google Scholar 

  55. Yi T-F, Zhu Y-R, Zhu X-D, Shu J, Yue C-B, Zhou A-N (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15(6):779–784. doi:10.1007/s11581-009-0373-x

    Google Scholar 

  56. Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW, Kim Y, Adamczyk L, Garcia RE, Dudney N, Kalinin SV (2010) Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat Nano 5(10):749–754. doi:http://www.nature.com/nnano/journal/v5/n10/abs/nnano.2010.174.html#supplementary-information

  57. Ou MN, Harutyunyan SR, Lai SJ, Chen CD, Yang TJ, Chen YY (2007) Thermal and electrical transport properties of a single nickel nanowire. Physica Status Solidi (B) 244(12):4512–4517. doi:10.1002/pssb.200777114

    Google Scholar 

  58. Cao G, Wang Y (2011) Characterization and properties of nanomaterials. Nanostructures and nanomaterials, vol world scientific series in nanoscience and nanotechnology, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Singapore. doi:10.1142/9789814340571_0008

  59. Ebner M, Chung D-W, Garcia RE, Wood V (2013) Tortuosity Anisotropy in Lithium-Ion Battery Electrodes. Adv Energy Mater 4(5). doi:10.1002/aenm.201301278

  60. Vijayaraghavan B, Ely DR, Chiang Y-M, García-García R, García RE (2012) An analytical method to determine tortuosity in rechargeable battery electrodes. J Electrochem Soc 159(5):A548–A552. doi:10.1149/2.jes113224

    Google Scholar 

  61. Newman JS, Tobias CW (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109(12):1183–1191. doi:10.1149/1.2425269

    Google Scholar 

  62. Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V (2013) X-Ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater 3(7):845–850. doi:10.1002/aenm.201200932

    Google Scholar 

  63. Ferguson TR, Bazant MZ (2012) Nonequilibrium thermodynamics of porous electrodes. J Electrochem Soc 159(12):A1967–A1985. doi:10.1149/2.048212jes

    Google Scholar 

  64. Newman J, Tiedemann W (1975) Porous-electrode theory with battery applications. AlChE J 21(1):25–41. doi:10.1002/aic.690210103

    Google Scholar 

  65. Tiedemann W, Newman J (1975) Maximum effective capacity in an ohmically limited porous electrode. J Electrochem Soc 122(11):1482–1485. doi:10.1149/1.2134046

    Google Scholar 

  66. Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H-J (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47(12):1899–1911. doi:10.1016/S0013-4686(02)00013-0

    Google Scholar 

  67. Sakamoto JS, Dunn B (2002) Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J Electrochem Soc 149(1):A26–A30. doi:10.1149/1.1425791

    Google Scholar 

  68. Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S (2012) The importance of “going nano” for high power battery materials. J Power Sources 219:217–222. doi:10.1016/j.jpowsour.2012.07.035

    Google Scholar 

  69. Syzdek J, Marcinek M, Kostecki R (2014) Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes. J Power Sources 245:739–744. doi:10.1016/j.jpowsour.2013.07.033

    Google Scholar 

  70. Martin JF, Yamada A, Kobayashi G, Nishimura S, Kanno R, Guyomard D, Dupré N (2008) Air exposure effect on LiFePO4. Electrochem Solid-State Lett 11(1):A12. doi:10.1149/1.2801016

    Google Scholar 

  71. Li H, Shi LH, Wang Q, Chen LQ, Huang XJ (2002) Nano-alloy anode for lithium ion batteries. Solid State Ionics 148(3–4):247–258. doi:10.1016/s0167-2738(02)00061-9

    Google Scholar 

  72. Martha SK, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D, Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M, Kovacheva D, Saliyski N (2009) A short review on surface chemical aspects of Li batteries: a key for a good performance. J Power Sources 189(1):288–296. doi:10.1016/j.jpowsour.2008.09.084

    Google Scholar 

  73. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents. Engineering materials and processes. Springer, Berlin

    Google Scholar 

  74. Antonietti M, Ozin GA (2004) Promises and problems of mesoscale materials chemistry or why meso? Chem-A Eur J 10(1):28–41. doi:10.1002/chem.200305009

    Google Scholar 

  75. Colfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44(35):5576–5591. doi:10.1002/anie.200500496

    Google Scholar 

  76. Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff GL, Pederson LR, Zhang J-G (2008) Oriented nanostructures for energy conversion and storage. Chemsuschem 1(8–9):676–697. doi:10.1002/cssc.200800087

    Google Scholar 

  77. Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angewandte Chemie-Int Ed 43(28):3673–3677. doi:10.1002/anie.200454216

    Google Scholar 

  78. Uchaker E, Zhou N, Li Y, Cao G (2013) Polyol-Mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J Phys Chem C 117(4):1621–1626. doi:10.1021/jp310641k

    Google Scholar 

  79. Cao AM, Hu JS, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 44(28):4391–4395. doi:10.1002/anie.200500946

    Google Scholar 

  80. Liu J, Xue D (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5(10):1525–1534. doi:10.1007/s11671-010-9728-5

    Google Scholar 

  81. Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195(2):567–573. doi:10.1016/j.jpowsour.2009.07.052

    Google Scholar 

  82. Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L (2014) A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-Ion batteries. Adv Energy Mater:n/a-n/a. doi:10.1002/aenm.201400062

    Google Scholar 

  83. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 (1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20(19):6095–6106. doi:10.1021/cm801245r

    Google Scholar 

  84. Zhang L, Wu B, Li N, Mu D, Zhang C, Wu F (2013) Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. J Power Sources 240:644–652. doi:10.1016/j.jpowsour.2013.05.019

    Google Scholar 

  85. Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506. doi:10.1002/adma.201203151

    Google Scholar 

  86. Xiao Y, Hu C, Cao M (2014) High lithium storage capacity and rate capability achieved by mesoporous Co3O4 hierarchical nanobundles. J Power Sources 247:49–56. doi:10.1016/j.jpowsour.2013.08.069

    Google Scholar 

  87. Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) CoMn2O4 Spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2. doi:http://www.nature.com/srep/2012/121217/srep00986/abs/srep00986.html#supplementary-information

  88. Wei W, Chen D, Wang R, Guo L (2012) Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries. Nanotechnology 23(47):475401

    Google Scholar 

  89. Hu L, Sun Y, Zhang F, Chen Q (2013) Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties. J Alloys Compd 576:86–92. doi:10.1016/j.jallcom.2013.04.146

    Google Scholar 

  90. Lan T, Liu Y, Dou J, Hong Z, Wei M (2014) Hierarchically porous TiO2 microspheres as a high performance anode for lithium-ion batteries. J Mater Chem A 2(4):1102–1106. doi:10.1039/c3ta14178k

    Google Scholar 

  91. Wang B, Wu HB, Zhang L, Lou XW (2013) Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew Chem Int Ed 52(15):4165–4168. doi:10.1002/anie.201300190

    Google Scholar 

  92. Pan A, Wu HB, Yu L, Lou XW (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem Int Ed 52(8):2226–2230. doi:10.1002/anie.201209535

    Google Scholar 

  93. Tao F, Gao C, Wen Z, Wang Q, Li J, Xu Z (2009) Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: fabrication and electrochemical performance. J Solid State Chem 182(5):1055–1060. doi:10.1016/j.jssc.2009.01.030

    Google Scholar 

  94. Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25(8):1180–1184. doi:10.1002/adma.201203999

    Google Scholar 

  95. Jeong J-M, Choi BG, Lee SC, Lee KG, Chang S-J, Han Y-K, Lee YB, Lee HU, Kwon S, Lee G, Lee C-S, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25(43):6250–6255. doi:10.1002/adma.201302710

    Google Scholar 

  96. Song K, Yoo S, Kang K, Heo H, Kang Y-M, Jo M-H (2013) Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural stability and kinetic enhancement. J Power Sources 229:229–233. doi:10.1016/j.jpowsour.2012.12.002

    Google Scholar 

  97. Cao F-F, Deng J-W, Xin S, Ji H-X, Schmidt OG, Wan L-J, Guo Y-G (2011) Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv Mater 23(38):4415–4420. doi:10.1002/adma.201102062

    Google Scholar 

  98. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134(42):17388–17391. doi:10.1021/ja307475c

    Google Scholar 

  99. Li Z, Li B, Yin L, Qi Y (2014) Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl Mater Interfaces 6(11):8098–8107. doi:10.1021/am500417j

    Google Scholar 

  100. Niederberger M, Colfen H (2006) Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. PCCP 8(28):3271–3287. doi:10.1039/b604589h

    Google Scholar 

  101. Song R-Q, Cölfen H (2010) Mesocrystals—ordered nanoparticle superstructures. Adv Mater 22(12):1301–1330. doi:10.1002/adma.200901365

    Google Scholar 

  102. Meldrum FC, Coelfen H (2010) Crystallization and formation mechanisms of nanostructures. Nanoscale 2(11):2326–2327. doi:10.1039/c0nr90029j

    Google Scholar 

  103. Wang Y, Cao GZ (2006) Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater 18(12):2787–2804. doi:10.1021/cm052765h

    MathSciNet  Google Scholar 

  104. Chen JS, Tan YL, Li CM, Cheah YL, Luan Deyan, Srinivasan Madhavi FYC, Boey LA, Archer Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130

    Google Scholar 

  105. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192(2):588–598. doi:10.1016/j.jpowsour.2009.02.038

    Google Scholar 

  106. Ren Y, Hardwick LJ, Bruce PG (2010) Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew Chem Int Ed 49(14):2570–2574. doi:10.1002/anie.200907099

    Google Scholar 

  107. Zhou L, Boyle DS, O’Brien P (2007) Uniform NH4TiOF3 mesocrystals prepared by an ambient temperature self-assembly process and their topotaxial conversion to anatase. Chem Commun 2:144–146. doi:10.1039/b611476h

    Google Scholar 

  108. Zhou L, Smyth-Boyle D, O’Brien P (2008) A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J Am Chem Soc 130(4):1309–1320. doi:10.1021/ja076187c

    Google Scholar 

  109. Zhang D, Li G, Wang F, Yu JC (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12(6):1759–1763. doi:10.1039/b922477g

    Google Scholar 

  110. Liu S-J, Gong J-Y, Hu B, Yu S-H (2009) Mesocrystals of rutile TiO2: mesoscale transformation, crystallization, and growth by a biologic molecules-assisted hydrothermal process. Cryst Growth Des 9(1):203–209. doi:10.1021/cg800227x

    Google Scholar 

  111. Hong Z, Wei M, Lan T, Jiang L, Cao G (2012) Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ Sci 5(1):5408–5413. doi:10.1039/c1ee02551a

    Google Scholar 

  112. Ohzuku T, Takehara Z, Yoshizawa S (1979) Nonaqueous lithium/titanium dioxide cell. Electrochim Acta 24(2):219–222. doi:10.1016/0013-4686(79)80028-6

    Google Scholar 

  113. Kavan L, Fattakhova D, Krtil P (1999) Lithium insertion into mesoscopic and single-crystal TiO2 (rutile) electrodes. J Electrochem Soc 146(4):1375–1379. doi:10.1149/1.1391773

    Google Scholar 

  114. Jiang C, Honma I, Kudo T, Zhou H (2007) Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem Solid-State Lett 10(5):A127–A129. doi:10.1149/1.2712041

    Google Scholar 

  115. Hong Z, Wei M, Lan T, Cao G (2012) Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries. Nano Energy 1(3):466–471. doi:10.1016/j.nanoen.2012.02.009

    Google Scholar 

  116. Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO(2) mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133(4):933–940. doi:10.1021/ja108205q

    Google Scholar 

  117. Hong Z, Xu Y, Liu Y, Wei M (2012) Unique ordered TiO(2) superstructures with tunable morphology and crystalline phase for improved lithium storage properties. Chemistry 18(34):10753–10760. doi:10.1002/chem.201200515

    Google Scholar 

  118. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641. doi:10.1038/nature06964

    Google Scholar 

  119. Zheng YQ, Shi ER, Chen ZZ, Li WJ, Hu XF (2001) Influence of solution concentration on the hydrothermal preparation of titania crystallites. J Mater Chem 11(5):1547–1551

    Google Scholar 

  120. Xu M, Wang F, Ding B, Song X, Fang J (2012) Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC Advances 2(6):2240. doi:10.1039/c2ra01119k

    Google Scholar 

  121. An Z, Zhang J, Pan S, Yu F (2009) Facile template-free synthesis and characterization of elliptic alpha-Fe2O3 superstructures. J Phys Chem C 113(19):8092–8096. doi:10.1021/jp9004168

    Google Scholar 

  122. Ning J, Jiang T, Men K, Dai Q, Li D, Wei Y, Liu B, Chen G, Zou B, Zou G (2009) Syntheses, characterizations, and applications in lithium ion batteries of hierarchical SnO nanocrystals. J Phys Chem C 113:14140–14144

    Google Scholar 

  123. Chen S, Wang M, Ye J, Cai J, Ma Y, Zhou H, Qi L (2013) Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research 6(4):243–252. doi:10.1007/s12274-013-0300-3

    Google Scholar 

  124. Duan X, Mei L, Ma J, Li Q, Wang T, Zheng W (2012) Facet-induced formation of hematite mesocrystals with improved lithium storage properties. Chem Commun 48(100):12204–12206. doi:10.1039/c2cc36620g

    Google Scholar 

  125. Ma J, Teo J, Mei L, Zhong Z, Li Q, Wang T, Duan X, Lian J, Zheng W (2012) Porous platelike hematite mesocrystals: synthesis, catalytic and gas-sensing applications. J Mater Chem 22(23):11694–11700. doi:10.1039/c2jm30216k

    Google Scholar 

  126. Su D, Dou S, Wang G (2014) Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Research 7(5):794–803. doi:10.1007/s12274-014-0440-0

    Google Scholar 

  127. Uchaker E, Gu M, Zhou N, Li Y, Wang C, Cao G (2013) Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9(22):3880–3886

    Google Scholar 

  128. Liu JF, Li QH, Wang TH, Yu DP, Li YD (2004) Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties. Angew Chem Int Ed 43(38):5048–5052. doi:10.1002/anie.200460104

    Google Scholar 

  129. Liu Y, Uchaker E, Zhou N, Li J, Zhang Q, Cao G (2012) Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries. J Mater Chem 22(46):24439–24445. doi:10.1039/c2jm34078j

    Google Scholar 

  130. Sun CH, Yang XH, Chen JS, Li Z, Lou XW, Li C, Smith SC, Lu GQ, Yang HG (2010) Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem Commun 46(33):6129–6131. doi:10.1039/c0cc00832j

    Google Scholar 

  131. Dang F, Hoshino T, Oaki Y, Hosono E, Zhou H, Imai H (2013) Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO(3). Nanoscale 5(6):2352–2357. doi:10.1039/c3nr33767g

    Google Scholar 

  132. Cao A, Manthiram A (2012) Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries. Phys Chem Chem Phys 14:6724–6728. doi:10.1039/c2cp40209b

    Google Scholar 

  133. Zhou N, Liu Y, Li J, Uchaker E, Liu S, Huang K, Cao G (2012) Synthesis and characterization of high power LiFePO4/C nano-plate thin films. J Power Sources 213:100–105. doi:10.1016/j.jpowsour.2012.04.022

    Google Scholar 

  134. Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M (2009) Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J Mater Chem 19(29):5125–5128. doi:10.1039/b909545d

    Google Scholar 

  135. Xia Y, Zhang WK, Huang H, Gan YP, Tian J, Tao XY (2011) Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-performance lithium-ion batteries. J Power Sources 196(13):5651–5658. doi:10.1016/j.jpowsour.2011.02.044

    Google Scholar 

  136. Chen M, Teng F, Li G, Shi H, Wang J, Xu M, Ji X, Lu T, Lv Y, S-i Mho (2012) Self-assembly of highly uniform LiFePO4 hierarchical nanostructures by surfactant molecules in a new mixture medium. Ionics 18(6):541–547. doi:10.1007/s11581-012-0703-2

    Google Scholar 

  137. Yang H, Wu X-L, Cao M-H, Guo Y-G (2009) Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C 113(8):3345–3351. doi:10.1021/jp808080t

    Google Scholar 

  138. Popovic J, Demir-Cakan R, Tornow J, Morcrette M, Su DS, Schloegl R, Antonietti M, Titirici M-M (2011) LiFePO(4) mesocrystals for lithium-ion batteries. Small 7(8):1127–1135. doi:10.1002/smll.201002000

    Google Scholar 

  139. Zhou N, Wang H-Y, Uchaker E, Zhang M, Liu S-Q, Liu Y-N, Cao G (2013) Additive-free solvothermal synthesis and Li-ion intercalation properties of dumbbell-shaped LiFePO4/C mesocrystals. J Power Sources 239:103–110. doi:10.1016/j.jpowsour.2013.03.136

    Google Scholar 

Download references

Acknowledgments

Part of this work was financially supported by the National Science Foundation (NSF, CMMI-1030048) and the University of Washington TGIF grant. This material is based in part upon work supported by the State of Washington through the University of Washington Clean Energy Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uchaker, E., Cao, G. (2015). Microstructurally Composed Nanoparticle Assemblies as Electroactive Materials for Lithium-Ion Battery Electrodes. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics