Skip to main content

Challenges of Key Materials for Rechargeable Batteries

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Rechargeable batteries are a most energy- and cost-effective device for electrical energy storage in a wide range of energy levels from portable electronics through transportation vehicles to load-leveling stationary storage. This chapter outlines the current status and challenges that remain for the key materials of rechargeable batteries, especially lithium-ion batteries, including the cathode, anode, electrolyte, and separator. In addition, the prospectus and challenges of battery systems beyond Li-ion, such as sodium–ion, magnesium, lithium–air, and lithium–sulfur batteries, are also discussed for the future research and development of rechargeable batteries.  

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  Google Scholar 

  2. Xu J, Dou S, Liu H, Dai L (2013) Cathode materials for next generation lithium ion batteries. Nano Energy 2:439–442

    Article  Google Scholar 

  3. Chebiam RV, Kannan AM, Prado F, Manthiram A (2001) Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem Commun 3:624–627

    Article  Google Scholar 

  4. Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ionics 89:197–202

    Article  Google Scholar 

  5. Song SW, Zhuang GV, Ross PN (2004) Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J Electrochem Soc 151:A1162–A1167

    Article  Google Scholar 

  6. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643

    Article  Google Scholar 

  7. Li X, Xu Y, Wang C (2009) Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode. J Alloy Compd 479:310–313

    Article  Google Scholar 

  8. Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324

    Article  Google Scholar 

  9. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184

    Article  Google Scholar 

  10. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  11. Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood Iii DL, Daniel C (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248

    Article  Google Scholar 

  12. Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Article  Google Scholar 

  13. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett 5:A149–A151

    Article  Google Scholar 

  14. Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1−yMyPO4 (M = Fe, Mn Co, and Mg) solid solution cathodes. J Phys Chem C 114:15530–15540

    Article  Google Scholar 

  15. Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079

    Article  Google Scholar 

  16. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707

    Article  Google Scholar 

  17. Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130

    Article  Google Scholar 

  18. He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q-H, Kim J-K, Kang F (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2: Article No. 913. doi:10.1038/srep00913

  19. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  Google Scholar 

  20. Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Woehrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11:A76–A80

    Article  Google Scholar 

  21. http://www.sony.net/SonyInfo/News/Press/200502/05-006E/

  22. http://www.greencarcongress.com/2009/12/panasonic-20091225.html

  23. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:170–192

    Article  Google Scholar 

  24. Abouimrane A, Ding J, Davidson IJ (2009) Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J Power Sources 189:693–696

    Article  Google Scholar 

  25. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242

    Article  Google Scholar 

  26. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  Google Scholar 

  27. Dalavi S, Xu M, Knight B, Lucht BL (2012) Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem Solid-State Lett 15:A28–A31

    Article  Google Scholar 

  28. von Cresce A, Xu K (2011) Electrolyte additive in support of 5 V Li ion chemistry. J Electrochem Soc 158:A337–A342

    Article  Google Scholar 

  29. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  Google Scholar 

  30. Zhang SS (2012) Effective approach toward safe Li-ion battery. In: Battery safety 2012, Las Vegas, NV, 6–7 Dec 2012

    Google Scholar 

  31. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  Google Scholar 

  32. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273

    Article  Google Scholar 

  33. Barker J, Gover RKB, Burns P, Bryan AJ (2006) Hybrid-ion a lithium-ion cell based on a sodium insertion material. Electrochem Solid-State Lett 9:A190–A192

    Article  Google Scholar 

  34. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279

    Article  Google Scholar 

  35. Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427

    Article  Google Scholar 

  36. Arthur TS, Singh N, Matsui M (2012) Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun 16:103–106

    Article  Google Scholar 

  37. Shao Y, Liu T, Li G, Gu M, Nie Z, Engelhard M, Xiao J, Lv D, Wang C, Zhang J-G, Liu J (2013) Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep 3: Article No. 3130. doi:10.1038/srep03130

  38. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727

    Article  Google Scholar 

  39. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047

    Article  Google Scholar 

  40. Mozhzhukhina N, Méndez De Leo LP, Calvo EJ (2013) Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery. J Phys Chem C 117:18375–18380

    Article  Google Scholar 

  41. Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li-air batteries. Energy Environ Sci 6:2302–2311

    Article  Google Scholar 

  42. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  Google Scholar 

  43. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  Google Scholar 

  44. Wang D-W, Zeng Q, Zhou G, Yin L, Li F, Cheng H-M, Gentle IR, Lu GQM (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1:9382–9394

    Article  Google Scholar 

  45. Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134

    Article  Google Scholar 

  46. Nagao M, Hayashi A, Tatsumisago M (2013) Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol (Weinheim, Ger.) 1:186–192

    Google Scholar 

  47. Zhang SS (2013) Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries. Front Energy Res 1:10. doi:10.3389/fenrg.2013.00010

    Google Scholar 

  48. Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115:25132–25137

    Article  Google Scholar 

  49. Mikhaylik Y, Kovalev I, Schock R, Kumaresan K, Xu J, Affinito J (2010) High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions. ECS Trans 25(35):23–34

    Article  Google Scholar 

  50. Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium-sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99

    Article  Google Scholar 

  51. Zhang SS (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochim Acta 97:226–230

    Article  Google Scholar 

  52. Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. US Patent 7,354,680

    Google Scholar 

  53. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23:1064–1069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Shui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Z., Zhang, S.S. (2015). Challenges of Key Materials for Rechargeable Batteries. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics