Skip to main content
Book cover

Evaporites pp 959–1079Cite as

Hydrocarbons and Evaporites

  • Chapter

Abstract

Even though evaporites constitute less than 2 % of the world’s sedimentary rocks, one-half of the world’s largest oilfields are sealed by evaporites, the other half are sealed by shales (Fig. 10.1; Grunau 1987). Kirkland and Evans (1981) argued that evaporites overlie or seal carbonates containing an estimated 50 % of the world’s known total petroleum reserve. Of the world’s 25 largest gas fields, nine are sealed by evaporites and sixteen by shales and hydrates. Sixteen are capped by Mesozoic seals, 7 by Palaeozoic seals, and only two by Tertiary seals. Fourteen are in the 1,000–2,000 m seal-depth interval, nine in the 2,000–3,000 m interval; and two in the 0–1,000 m interval. As one would expect, more gas fields than oilfields are sealed by Palaeozoic caprocks, and more oilfields than gas fields are sealed by Tertiary caprocks. Surprisingly, the seal depth intervals for the 25 largest oil and gas fields do not differ significantly. However, Grunau argues many “supergiant” gas accumulations below depths of 3,000 m and have either not yet been discovered, or have not yet been put in production (e.g. much of the Khuff-hosted gas in North Dome in the Middle East).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A giant oil field contains more than 0.5 × 109 barrels of expected ultimate recoverable oil, while a supergiant contains more than 5 × 109 barrels (Fitzgerald 1980). The equivalent separation between giant and supergiant gas fields is 0.5 × 109 and 5 × 109 BOE, respectively.

    BOE is barrels of oil equivalent on a BTU basis; 1 barrel of oil = 5.61 ft3, so the respective cutoffs for giant and super giant gas fields are 3 and 30 tcf (trillion cubic feet).

  2. 2.

    1P reserves = proven reserves (both proved developed reserves + proved undeveloped reserves).

    2P reserves = 1P (proven reserves) + probable reserves; hence proved

    AND probable.

    3P reserves = the sum of 2P (proven reserves + probable reserves) + possible reserves; hence, all 3Ps are proven AND probable AND possible.

  3. 3.

    Name changed to honour former Brazilian President, Luiz Inacio Lula da Silva.

  4. 4.

    Entry pressure is the minimum capillary pressure required to force oil or gas from one water-filled pore to the next.

  5. 5.

    Gas or methane hydrates (more precisely called clathrates) are the solid form of mostly methane trapped in a crystalline framework of ice and are only found in low temperature seafloor or permafrost conditions. They seal onshore supergiant fields of west Siberia and Timan- Pechora basins of Russia and occur also as solid bacterial-associated products in the deep seafloor, where temperatures are low and water depths exceed 500 m. Seafloor clathrates are thought to contain more than 20 quadrillion cubic metres of methane. In oil equivalents this is around 15 trillion m3 (116 trillion barrels), more than 30 times the likely volume of oil and gas reserves (Hunt 1996).

  6. 6.

    Synonymous with minimum displacement pressure.

  7. 7.

    In most oilfield applications the millidarcy (md), which is 0.001 darcies, is used as a measure of permeability. Permeability is fundamentally a L2 unit. In SI it is expressed in μm2, which is 10−12 m2. In conventional metric use it is expressed in m2 (metres squared) or cm2. The conversion between oilfield and SI units is 1 darcy = 9.869 × 10−13 m2. In practical terms, 1 md and 1 μm2 are essentially equivalent, while in terms of hydraulic conductivity, 1 darcy = 10−5 m/s.

  8. 8.

    The Tiber oilfield was drilled in 2009 by the semi-submersible oil rig Deepwater Horizon. The same rig was destroyed as the result of an explosion 7 months after the discovery at Tiber, while drilling its next well at Macondo in April 2010.

References

  • Achauer, C. W., 1985, Facies morphology and major reservoir controls, James Atoll Reef, Fairway Field, Texas, in P. Roehl, and P. Choquette, eds., Carbonate petroleum reservoirs – a casebook: New York, Springer–Verlag, p. 485–494.

    Google Scholar 

  • Adams, J. F., and M. L. Rhodes, 1960, Dolomitisation by seepage refluxion: American Association of Petroleum Geologists Bulletin, v. 44, p. 1912–1920.

    Google Scholar 

  • Ahr, W. M., and G. J. Palko, 1981, Depositional and diagenetic cycles in Smackover limestone-sandstone sequences, Lincoln Parish, Louisiana: Transactions of Gulf Coast Association of Geological Societies, v. 31, p. 7–17.

    Google Scholar 

  • Al Eid, G. A., and A. A. Al Tawil, 2009, Depositional Anhydrite Types and Controls from Anhydrite Cementation within a High-Resolution Sequence Stratigraphic Framework of the Khuff C, Hawiyah Area; Saudi Arabia (Abs.): American Association of Petroleum Geologists Search and Discovery Article #90090 ©2009 American Association of Petroleum Geologists, Annual Convention and Exhibition, Denver, Colorado, June 7–10, 2009

    Google Scholar 

  • Al Silwadi, M. S., A. Kirkham, M. D. Simmons, and B. N. Twombley, 1996, New insights into regional correlation and sedimentology, Arab Formation (Upper Jurassic), offshore Abu Dhabi: GeoArabia, v. 1, p. 6–27.

    Google Scholar 

  • Al-Awwad, S. F., and L. B. Collins, 2013, Carbonate-platform scale correlation of stacked high-frequency sequences in the Arab-D reservoir, Saudi Arabia: Sedimentary Geology, v. 294, p. 205–218.

    Google Scholar 

  • Al-Barwani, B., and K. McClay, 2008, Salt tectonics in the Thumrait area, in the southern part of the South Oman Salt Basin: Implications for mini-basin evolution: GeoArabia, v. 13, p. 77–108.

    Google Scholar 

  • Al-Barwani, B., and K. McClay, 2008, Salt tectonics in the Thumrait area, in the southern part of the South Oman Salt Basin: Implications for mini-basin evolution: GeoArabia, v. 13, p. 77–108.

    Google Scholar 

  • Al-Husseini, M. I., 1997, Jurassic sequence stratigraphy of the western and southern Arabian Gulf: GeoArabia, v. 3, p. 361–382.

    Google Scholar 

  • Al-Jallal, I. A., 1995, The Khuff Formation: its regional reservoir potential in Saudi Arabia and other Gulf countries: depositional and stratigraphic approach, in M. I. Al-Husseini, ed., Middle East Petroleum Geosciences Conference, GEO’94: , v. 1: Manama, Bahrain, Gulf PetroLink, Bahrain, p. 103–119.

    Google Scholar 

  • Al-Murani, G. S. G., 1986, Sedimentology and petrophysical aspects of the middle Miocene Jeribe Formation, East Baghdad field, Iraq: doctoral thesis, University of Oxford, Oxford, 256 p.

    Google Scholar 

  • Al-Saad, H., and F. N. Sadooni, 2001, A new depositional model and sequence stratigraphic interpretation for the Upper Jurassic Arab “D” reservoir in Qatar: Journal of Petroleum Geology, v. 24, p.243-264.

    Google Scholar 

  • Al-Siyabi, H. A., 2005, Exploration history of the Ara intrasalt carbonate stringers in the South Oman Salt Basin: GeoArabia, v. 10, p. 39–72.

    Google Scholar 

  • Ala, M. A., 1982, Chronology of trap formation and migration of hydrocarbons in Zagros Sector of Southwest Iran: Bulletin American Association of Petroleum Geologists, v. 66, p. 1535–1541.

    Google Scholar 

  • Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, v. 304, p. 1–20.

    Google Scholar 

  • Allen, J. S., W. S. Thomas, and D. Lavoie, 2010, The Laurentian margin of northeastern North America, in R. P. Tollio, M. J. Bartholomew, J. P. Hibbard, and P. M. Karabinos, eds., From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region, Geological Society of America, Memoir 206, p. 71–90.

    Google Scholar 

  • Alsharhan, A. S., 2003, Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt: American Association Petroleum Geologists – Bulletin, v. 87, p. 143–180.

    Google Scholar 

  • Alsharhan, A. S., and C. G. S. C. Kendall, 1994, Depositional setting of the Upper Jurassic Hith Anhydrite of the Arabian Gulf; an analog to Holocene evaporites of the United Arab Emirates and Lake MacLeod of Western Australia: Bulletin American Association of Petroleum Geologists, v. 78, p. 1075–1096.

    Google Scholar 

  • Alsharhan, A. S., and A. E. M. Nairn, 1993, Geology and hydrocarbon habitat in the Arabian Basin – the Mesozoic of the State of Qatar: Geologie en Mijnbouw, v. 71, p. 265–294.

    Google Scholar 

  • Alsharhan, A. S., and A. E. M. Nairn, 1997, Sedimentary Basins and Petroleum Geology of the Middle East: Amsterdam, The Netherlands, Elsevier Science B. V., 942 p.

    Google Scholar 

  • Amthor, J., and J. Okkerman, 1998, Influence of early diagenesis on reservoir quality of Rotliegende sandstones, northern Netherlands: Bulletin American Association of Petroleum Geologists, v. 82, p. 2246–2265.

    Google Scholar 

  • Amthor, J. E., and N. L. Frewin, 1999, Enigmatic Origin of a Late Pre-Cambrian Laminated Chert: Have Bacteria Done It?: Bulletin American Association of Petroleum Geologists American Association of Petroleum Geologists Annual Meeting San Antonio, Texas, April 11–14, 1999, v. 83.

    Google Scholar 

  • Amthor, J. E., J. Ramezani, M. W. Martin, A. Matter, J. P. Grotzinger, S. Schröder, and S. A. Bowring, 2003, Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman: Geology, v. 31, p. 431–434.

    Google Scholar 

  • Amthor, J. E., K. Ramseyer, T. Faulkner, and P. Lucas, 2005, Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian boundary: the Al Shomou Silicilyte, South Oman Salt Basin: Geoarabia, v. 10, p. 89–122.

    Google Scholar 

  • Amthor, J. E., W. Smits, and P. Nederlof, 1998, Prolific Oil Production from a Source Rock- The Athel Silicilyte SourceRock Play in South Oman (abs.): Bulletin American Association of Petroleum Geologists, American Association of Petroleum Geologists Annual Meeting, Salt Lake City, Utah, May 17–20, 1998, v. 82 (13).

    Google Scholar 

  • Anderson, N. L., R. J. Brown, and R. C. Hinds, 1988, Geophysical aspects of Wabamun salt distribution in southern Alberta: Can. Jour. Expl. Geophys., v. 24, p. 166–178.

    Google Scholar 

  • Anderson, N. L., and D. A. Cederwall, 1993, Westhazel General Petroleums Pool; case history of a salt-dissolution trap in west-central Saskatchewan, Canada: Geophysics, v. 58, p. 889–897.

    Google Scholar 

  • Anderson, N. L., and R. Knapp, 1993, An overview of some of the larger scale mechanisms of salt dissolution in Western Canada: Geophysics, v. 58, p. 1375–1387.

    Google Scholar 

  • Anderson, S. B., and J. B. Hunt, 1964, Devonian salt solution in north central North Dakota: Third International Williston Basin Symposium Proceedings, p. 93–104.

    Google Scholar 

  • Andreason, M. W., 1992, Coastal siliciclastic sabkhas and related evaporative environments of the Permian Yates Formation, North Ward-Estes field, Ward County, Texas: American Association of Petroleum Geologists Bulletin, v. 76, p. 1735–1759.

    Google Scholar 

  • Aqrawi, A. A. M., M. Keramati, S. N. Ehrenberg, N. Pickard, A. Moallemi, T. Svana, G. Darke, J. A. D. Dickson, and N. H. Oxtoby, 2006, The origin of dolomite in the Asmari Formation (Oligocene-Lower Miocene), Dezful Embayment, SW Iran: Journal of Petroleum Geology, v. 29, p. 381–401.

    Google Scholar 

  • Ayres, M. G., M. Bilal, R. W. Jones, L. W. Slenz, M. Tartir, and A. O. Wilson, 1982, Hydrocarbon Habitat in Main Producing Areas, Saudi Arabia: American Association of Petroleum Geologists Bulletin, v. 66, p. 1–9.

    Google Scholar 

  • Bai, G., and Y. Xu, 2014, Giant fields retain dominance in reserves growth: Oil & Gas Journal, v. 112, p. 44-.

    Google Scholar 

  • Baria, L. R., D. l. Stoudt, P. M. Harris, and P. D. Crevello, 1982, Upper Jurassic reefs of Smackover Formation, United States Gulf Coast: American Association Petroleum Geologists Bulletin, v. 66, p. 1449–1482.

    Google Scholar 

  • Barrett, M. L., 1986, Replacement geometry and fabrics of the Smackover (Jurassic) Dolomite, southern Alabama: Gulf Coast Association of Geological Societies Transactions, v. 36, p. 9–18.

    Google Scholar 

  • Beach, D. K., and J. W. Giffin, 1992, Stanley Field, USA Williston Basin, North Dakota, in N. H. Foster, and E. A. Beaumont, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps III: Tulsa, OK, American Association Petroleum Geologists, p. 389–420.

    Google Scholar 

  • Beales, F. W., and A. E. Oldershaw, 1969, Evaporite-solution brecciation and Devonian carbonate reservoir porosity in western Canada: Am. Assoc. Petroleum Geologists Bull, v. 53, p. 503–512.

    Google Scholar 

  • Beauheim, R. L., and R. M. Roberts, 2002, Hydrology and hydraulic properties of a bedded evaporite formation: Journal of Hydrology, v. 259, p. 66–88.

    Google Scholar 

  • Becher, J. W., and C. H. Moore, 1976, The Walker Creek Field – A Smackover diagenetic trap: Transactions of Gulf Coast Association of Geological Societies, v. 26, p. 34–56.

    Google Scholar 

  • Beglinger, S. E., H. Doust, and S. Cloetingh, 2012, Relating petroleum system and play development to basin evolution: West African South Atlantic basins: Marine and Petroleum Geology, v. 30, p. 1–25.

    Google Scholar 

  • Benson, J., L. M. Pultz, and D. D. Bruner, 1996, Paleotopographic Vs Eustatic Controls on Deposition of the Smackover Formation, Appleton Field, Escambia County, Alabama (Abs.): Bulletin American Association of Petroleum Geologists, v. 80, p. 1495.

    Google Scholar 

  • Bentz, L. M., 1992, Pecos Slope Field – USA, Permian Basin, New Mexico, in N. H. Foster, and E. A. Beaumont, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps III: Tulsa, OK, American Association Petroleum Geologists, p. 129–153.

    Google Scholar 

  • Bérest, P., B. Brouard, and G. Hévin, 2011, Twelve-year monitoring of the idle Etrez salt cavern: International Journal of Rock Mechanics and Mining Sciences, v. 48, p. 168–173.

    Google Scholar 

  • Bérest, P., B. Brouard, and G. Hévin, 2011, Twelve-year monitoring of the idle Etrez salt cavern: International Journal of Rock Mechanics and Mining Sciences, v. 48, p. 168–173.

    Google Scholar 

  • Beydoun, Z. R., M. W. Hughes Clark, and R. Stoneley, 1992, Petroleum in the Zagros Basin: A Late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Palaeozoic-Mesozoic passive-margin shelf, in R. W. Macqueen, and D. A. Leckie, eds., Foleland basins and fold belts: Tulsa. OK, American Association of Petroleum Geologists Memoir 55, p. 309–339.

    Google Scholar 

  • Billo, S. M., 1996, Geology of marine evaporites favorable for oil, gas exploration: Oil & Gas Journal, v. 94, p. 69–73.

    Google Scholar 

  • Borchert, R., D. Fischer, R. Johnson, and L. C. Gerhard, 1990, Glenburn Field – USA, Williston Basin, North Dakota, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps I: Tulsa, OK, American Association Petroleum Geologists, p. 91–106.

    Google Scholar 

  • Brown, A. A., and R. G. Loucks, 2001, Evaluation of Anhydrite Seals through Depositional, Structural, and Lithological Analysis; Example from the Jurassic Arab Formation, Al Rayyan Field, Qatar (abs.): Bulletin American Association of Petroleum Geologists, v. 85(13).

    Google Scholar 

  • Buchbinder, B., 1996, Miocene carbonates of the eastern Mediterranean, the Red Sea and the Mesopotamian Basin: geodynamic and eustatic controls, in E. K. e. a. Franseen, ed., Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions, SEPM/Society for Sedimentary Geology; Concepts in Sedimentology and Paleontology, v. 5, p. 89–96.

    Google Scholar 

  • Burwood, R., 1984, Carbonate source rocks for six million barrels of oil per day – Zagros fold belt, southwestern Iran, in J. G. Palacas, ed., Petroleum geochemistry and source rock potential of carbonate rocks, American Association of Petroleum Geologists Studies in Geology 18, p. 206.

    Google Scholar 

  • Broughton, P. L., 2013, Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada: Sedimentary Geology, v. 283, p. 57–82.

    Google Scholar 

  • Cantrell, D. L., and R. M. Hagerty, 1999, Microporosity in the Arab Formation Carbonates, Saudi Arabia: GeoArabia, v. 4, p. 129–154.

    Google Scholar 

  • Cantrell, D. L., and R. M. Hagerty, 2003, Reservoir rock classification, Arab-D reservoir, Ghawar field, Saudi Arabia: GeoArabia, v. 8, p. 129–154.

    Google Scholar 

  • Cantrell, D. L., P. K. Swart, C. R. Handford, C. G. S. C. Kendall, and H. Westphal, 2001, Geology and production significance of dolomite, Arab D reservoir, Ghawar Field, Saudi Arabia: GeoArabia, v. 6, p. 45–60.

    Google Scholar 

  • Cartwright, J., M. Huuse, and A. Aplin, 2007, Seal bypass systems: American Association Petroleum Geologists – Bulletin, v. 91, p. 1141–1166.

    Google Scholar 

  • Casabianca, D., R. J. H. Jolly, and R. Pollard, 2007, The Machar Oil Field: waterflooding a fractured chalk reservoir: Geological Society, London, Special Publications, v. 270, p. 171–191.

    Google Scholar 

  • Cercone, K. R., and K. C. Lohmann, 1986, Diagenetic history of the Union 8 pinnacle reef (Middle Silurian), northern Michigan, USA, in B. Purser, and J. Schroeder, eds., Reef diagenesis.: Berlin, Germany, Elsevier, p. 381–398.

    Google Scholar 

  • Cheng, A., and J. T. Kwan, 2012, Optimal Injection Design Utilizing Tracer and Simulation in a Surfactant Pilot for a Fractured Carbonate Yates Field, Society of Petroleum Engineers.

    Google Scholar 

  • Chengzao, J., and L. Qiming, 2008, Petroleum geology of Kela-2, the most productive gas field in China: Marine and Petroleum Geology, v. 25, p. 335–343.

    Google Scholar 

  • Chimene, C. A., 1991, Walker Creek Field – USA, Gulf of Mexico Basin, Arkansas, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps II: Tulsa, OK, American Association Petroleum Geologists, p. 55–117.

    Google Scholar 

  • Chuber, S., and W. C. Pusey, 1985, Productive Permian carbonate cycles, San Andres Formation, Reeves field, West Texas, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 289–307.

    Google Scholar 

  • Clark, D., J. Heaviside, and K. Habib, 2003, Reservoir properties of Arab carbonates, Al Rayyan field, offshore Qatar, in C. J. R. Braithwaite, G. Rizzi, and G. Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs, v. 235, Geological Society (London) Special Publication, p. 193–232.

    Google Scholar 

  • Clement, J. H., 1985, Depositional sequences and characteristics of Ordovician Red River Reservoirs, Pennel Field, Williston Basin, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: a case book: New York, Springer Verlag, p. 71–84.

    Google Scholar 

  • Cossey, S. P., 2004, Celebrations began with cognac: American Association of Petroleum Geologists Explorer, v. September 2004.

    Google Scholar 

  • Craig, D. H., 1988, Caves and other features of Permian karst in San Andres dolomite, Yates field reservoirs, west Texas, in N. P. James, and P. W. Choquette, eds., Paleokarst: New York, Springer-Verlag, p. 342–363.

    Google Scholar 

  • Craig, J., U. Biffi, R. F. Galimberti, K. A. R. Ghori, J. D. Gorter, N. Hakhoo, D. P. Le Heron, J. Thurow, and M. Vecoli, 2013, The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks: Marine and Petroleum Geology, v. 40, p. 1–47.

    Google Scholar 

  • D’Heur, M., 1990a, West Ekofisk Field--Norway Central Graben, North Sea, Structural Traps IV: Tectonic and Nontectonic Fold Traps, American Association Petroleum Geologists, Special Publication, p. 57–83.

    Google Scholar 

  • D’Heur, M., 1990b, Eldfisk Field--Norway Central Graben, North Sea, Structural Traps IV: Tectonic and Nontectonic Fold Traps, American Association Petroleum Geologists, Special Publication, p. 27–56.

    Google Scholar 

  • Dasgupta, S., M. R. Hong, and I. A. Al-Jallal, 2002, Accurate reservoir characterization to reduce drilling risk in Khuff-C carbonate, Ghawar field, Saudi Arabia: GeoArabia, v. 7, p. 81–100.

    Google Scholar 

  • Davies, G. R., and L. B. Smith, 2006, Structurally controlled hydrothermal dolomite reservoir facies: An overview: Bulletin American Association Petroleum Geologists, v. 90, p. 1641–1690.

    Google Scholar 

  • Davis, D. M., and T. Engelder, 1987, Thin-skinned deformation over salt, in I. Lerche, and J. J. O’Brien, eds., Dynamical geology of salt and related structures: New York, Academic Press, p. 301–337.

    Google Scholar 

  • Davison, I., G. Alsop, N. Evans, and M. Safaricz, 2000a, Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea: Marine & Petroleum Geology, v. 17, p. 601–618.

    Google Scholar 

  • Davison, I., I. Alsop, P. Birch, C. Elders, N. Evans, H. Nicholson, P. Rorison, D. Wade, J. Woodward, and M. Young, 2000b, Geometry and late-stage structural evolution of Central Graben salt diapirs, North Sea: Marine & Petroleum Geology, v. 17, p. 499–522.

    Google Scholar 

  • DeLuca, M., 1999, Forty-six wells designated subsalt in the Gulf of Mexico: Offshore, v. January Issue, p. 50.

    Google Scholar 

  • Demaison, G. J., and B. J. Huizinga, 1991, Genetic classification of petroleum systems: Bulletin American Association of Petroleum Geologists, v. 75, p. 1626–1643.

    Google Scholar 

  • DeMis, W. D., 1992, Elkhorn Ranch Field -USA, Williston Basin, North Dakota, in N. H. Foster, and E. A. Beaumont, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps III: Tulsa, OK, American Association Petroleum Geologists, p. 369–388.

    Google Scholar 

  • Depowski, S., and T. Peryt, 1985, Carbonate petroleum reservoirs in the Permian dolomites of the Zechstein, Fore-Sudetic area, western Poland, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 251–264.

    Google Scholar 

  • Dill, H. G., R. Botz, Z. Berner, D. Stüben, S. Nasir, and H. Al-Saad, 2005, Sedimentary facies, mineralogy, and geochemistry of the sulphate-bearing Miocene Dam Formation in Qatar: Sedimentary Geology, v. 174, p. 63–96.

    Google Scholar 

  • Dill, H. G., S. Nasir, and H. Al-Saad, 2003, Lithological and structural evolution of the northern sector of Dukhan anticline, Qatar, during the early Tertiary: with special reference to sequence stratigraphic bounding surfaces: GeoArabia, v. 8, p. 201–226.

    Google Scholar 

  • Dooley, T. P., M. P. A. Jackson, and M. R. Hudec, 2009, Inflation and deflation of deeply buried salt stocks during lateral shortening: Journal of Structural Geology, v. 31, p. 582–600.

    Google Scholar 

  • Douglas, J. L., and S. A. Members of the ‘Ain Dar/Shedgum Modeling Team, 1996, Geostatistical Model for the Arab-D Reservoir, North ‘Ain Dar Pilot, Ghawar Field, Saudi Arabia: An Improved Reservoir Simulation Model: GeoArabia, v. 1, p. 267–284.

    Google Scholar 

  • Downey, M. W., 1984, Evaluating seals for hydrocarbon accumulations: Bulletin American Association of Petroleum Geologists, v. 68, p. 1752–1763.

    Google Scholar 

  • Dribus, J. R., M. P. A. Jackson, J. Kapoor, and M. F. Smith, 2008, The Prize Beneath the Salt: Oil Field Review (Schlumberger), v. 20, p. 4–17.

    Google Scholar 

  • Druckman, Y., and C. H. Moore, 1985, Late subsurface secondary porosity in a Jurassic grainstone reservoir, Smackover formation, Mt Vernon Field, Southern Arkansas, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 369–383.

    Google Scholar 

  • Dischinger, J. D., and S. Mitra, 2006, Three-dimensional structural model of the Painter and East Painter reservoir structures, Wyoming fold and thrust belt: Bulletin American Association Petroleum Geologists, v. 90, p. 1171–1185.

    Google Scholar 

  • Ehgartner, B. L., J. T. Neal, and T. E. Hinkebein, 1998, Gas Releases from Salt: SAND98-1354, Sandia National Laboratories, Albuquerque, NM, June 1998.

    Google Scholar 

  • Ehrenberg, S. N., P. H. Nadeau, and A. A. M. Aqrawi, 2007, A comparison of Khuff and Arab reservoir potential throughout the Middle East: Bulletin American Association Petroleum Geologists, v. 91, p. 275–286.

    Google Scholar 

  • Eichenseer, H. T., F. R. Walgenwitz, and P. J. Biondi, 1999, Stratigraphic Control on Facies and Diagenesis of Dolomitized Oolitic Siliciclastic Ramp Sequences (Pinda Group, Albian, Offshore Angola): Bulletin American Association Petroleum Geologists, v. 83, p. 1729–1758.

    Google Scholar 

  • El Taki, H., and B. R. Pratt, 2010, Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites : RedRiver strata (Upper Ordovician) of Southern Saskatchewan, Canada: Bulletin Canadian Petroleum Geology, v. 60, p. 37–58.

    Google Scholar 

  • Elias, A. R. D., L. F. De Ros, A. M. P. Mizusaki, and S. M. C. Anjos, 2004, Diagenetic patterns in eolian/coastal sabkha reservoirs of the Solimões Basin, Northern Brazil: Sedimentary Geology, v. 169, p. 191–217.

    Google Scholar 

  • Elliott, L. A., and J. K. Warren, 1989, Stratigraphy and depositional environment of lower San Andres Formation in subsurface and equivalent outcrops; Chaves, Lincoln, and Roosevelt counties, New Mexico: Bulletin American Association of Petroleum Geologists, v. 73, p. 1307–1325.

    Google Scholar 

  • Enger, S., and A. Logan, 2001, Ultradeepwater play paces gulf, North America: Oil & Gas Journal, v. 99, p. 80–85.

    Google Scholar 

  • Fabricius, I. L., B. Røgen, and L. Gommesen, 2007, How depositional texture and diagenesis control petrophysical and elastic properties of samples from five North Sea chalk fields: Petroleum Geoscience, v. 13, p. 81–95.

    Google Scholar 

  • Fard, A., M. Sepehr, and S. Sherkati, 2011, Neogene salt in SW Iran and its interaction with Zagros folding: Geological Magazine, v. 148, p. 854–867.

    Google Scholar 

  • Feazel, C. T., 1985, Diagenesis of Jurassic grainstone reservoirs in the Smackover Formation, Chatom Field, Alabama, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 357–367.

    Google Scholar 

  • Fischer, D., T. Heck, and L. C. Gerhard, 1990, Medicine Pole Hills Field, Williston Basin, North Dakota, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps I: Tulsa, OK, American Association Petroleum Geologists, p. 229–255.

    Google Scholar 

  • Fitzgerald, T. A., 1980, Giant oil field discoveries 1968–1978; An overview, in M. T. Halbouty, ed., Giant oil and gas fields of the decade 1968–1978: Tulsa, OK, American Association of Petroleum Geologists Memoir 30.

    Google Scholar 

  • Foster, P. T., and P. R. Rattey, 1993, The evolution of fractured chalk reservoir: Machar oilfield, UK, North Sea: Petroleum Geology of Northwest Europe, Barbican Conference Proceedings, Geological Society of London, v. 2, p. 1445–1452.

    Google Scholar 

  • Frey, M. G., and W. H. Grimes, 1970, Bay Marchand – Timbalier Bay – Caillou Island Salt Complex, Louisiana: American Association Petroleum Geologists – Memoir, v. 14, p. 277–291.

    Google Scholar 

  • Galloway, W. E., T. E. Ewing, C. M. Garret, N. Tyler, and D. G. Bebout, 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology special publication, 139 p.

    Google Scholar 

  • Gerdes, K. D., P. Winefield, M. D. Simmons, and C. Van Oosterhout, 2010, The influence of basin architecture and eustacy on the evolution of Tethyan Mesozoic and Cenozoic carbonate sequences: Geological Society, London, Special Publications, v. 329, p. 9–41.

    Google Scholar 

  • Gerhard, L. C., 1985, Porosity development in the Mississippian pisolitic limestones of the Mission Canyon formation, Glenburn field, Williston basin, North Dakota., in P. O. Roehl, and P. W. Choquette, eds., Carbonate Petroleum Reservoirs, Springer-Verlag, p. 191–205.

    Google Scholar 

  • Gill, D., 1977, Salina A-1 sabkha cycles and the Late Silurian paleogeography of the Michigan Basin: Journal of Sedimentary Petrology, v. 47, p. 979–1017.

    Google Scholar 

  • Gill, D., 1985, Depositional facies of Middle Silurian (Niagaran) pinnacle reefs, Belle River Mills gas field, Michigan Basin, SE Michigan, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: a case book: New York, Springer Verlag, p. 123–139.

    Google Scholar 

  • Gill, D., 1994, Niagaran reefs of Northern Michigan. 1. Exploration portrait: Journal of Petroleum Geology, v. 17, p. 99–110.

    Google Scholar 

  • Gill, W. D., and M. A. Ala, 1972, Sedimentology of the Gachsaran Formation (Lower Fars Series), Southwest Iran: American Association Petroleum Geologists – Bulletin, v. 56, p. 1965–1974.

    Google Scholar 

  • Gingras, M. K., S. G. Pemberton, K. Muelenbachs, and H. G. Machel, 2004, Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada: Geobiology, v. 2, p. 21–30.

    Google Scholar 

  • Glennie, K. W., 1990, Outline of North Sea history and structural framework, in K. W. Glennie, ed., Introduction to the petroleum geology of the North Sea (3rd edition): Oxford, Blackwell Scientific Publications, p. 34–77.

    Google Scholar 

  • Gorin, G. E., L. G. Racz, and M. R. Walter, 1982, Late Precambrian – Cambrian Sediments of Huqf Group, Sultanate of Oman: American Association Petroleum Geologists – Bulletin, v. 66, p. 2609–2627.

    Google Scholar 

  • Gorski, M., Z. Wojtkowiak, and S. Radecki, 1999, Barnowko-Mostno-Buszewo (BMB): the largest crude oil deposit in Poland: Petroleum Geoscience, v. 5, p. 5–15.

    Google Scholar 

  • Graham, B., W. K. Reilly, F. Beinecke, D. F. Boesch, T. D. Garcia, C. A. Murray, and F. Ulmer, 2011, Deep Water; The Gulf Oil Disaster and the Future of Offshore Drilling; Report to the President, National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling, January 2011.

    Google Scholar 

  • Graham Wall, B. R., R. Girbacea, A. Mesonjesi, and A. Aydin, 2006, Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt: American Association of Petroleum Geologists Bulletin, v. 90, p. 1227–1249.

    Google Scholar 

  • Grajales-Nishimura, J. M., E. Cedillo-Pardo, C. Rosales-Dominguez, D. J. Morán-Zenteno, D. J. Alverez, P. Claeys, J. Ruíz-Morales, J. GArcía-Hernández, P. Padilla-Avila, and A. Sánchez-Ríos, 2000, Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields: Geology, v. 28, p. 307–310.

    Google Scholar 

  • Grötsch, J., R. El-Khassawneh, S. Lokier, G. Coy, E. van der Weerd, S. Masalmeh, J. van Dorp, O. Suwaina, G. Ajlani, and A. Taher, 2003, The Arab Formation in central Abu Dhabi: 3-D reservoir architecture and static and dynamic modeling: GeoArabia, v. 8, p. 47–86.

    Google Scholar 

  • Grotzinger, J., E. W. Adams, and S. Schroder, 2005, Microbial-metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia: Geological Magazine, v. 142, p. 499–517.

    Google Scholar 

  • Grunau, H. R., 1987, A worldwide look at the cap-rock problem: Journal of Petroleum Geology, v. 103, p. 245–266.

    Google Scholar 

  • Halbouty, M. T., 1979, Salt domes, Gulf region, United States and Mexico: Houston, Texas, Gulf Publishing, 561 p.

    Google Scholar 

  • Hall, S. H., 2002, The role of autochthonous salt inflation and deflation in the northern Gulf of Mexico: Marine and Petroleum Geology, v. 19, p. 649–682.

    Google Scholar 

  • Halley, R. B., 1985, Setting and geologic summary of the Lower Cretaceous, Sunniland field. Southern Florida, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 443–454.

    Google Scholar 

  • Halley, R. B., 1985, Setting and geologic summary of the Lower Cretaceous, Sunniland field. Southern Florida, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 443–454.

    Google Scholar 

  • Haq, B. U., J. Hardenbol, and P. R. Vail, 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156–1167.

    Google Scholar 

  • Harding, T. P., 1974, Petroleum traps associated with wrench faults: Bulletin American Association Petroleum Geologists, v. 58, p. 1290–1304.

    Google Scholar 

  • Hardman, R. F. P., and W. J. Kennedy, 1980, Chalk reservoirs of the Hod Fields, Norway: The sedimentation of the North Sea reservoir rocks, Geilo: Norsk Petroleumforening, Section XI.

    Google Scholar 

  • Harris, P. M., and S. D. Walker, 1990, McElroy Field, Central Basin Platform, Permian Basin, Texas, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps I: Tulsa, OK, American Association Petroleum Geologists, p. 195–227.

    Google Scholar 

  • Harrison, W. J., and L. L. Summa, 1991, Paleohydrology of the Gulf of Mexico Basin: American Journal of Science, v. 291, p. 109–176.

    Google Scholar 

  • Hawas, and H. Takezaki, 1995, A Model for Migration and Accumulation of Hydrocarbons in the Thamama and Arab Reservoirs in Abu Dhabi, U.A.E. (abs.): Bulletin American Association of Petroleum Geologists, v. 79, p. 1221.

    Google Scholar 

  • Haywick, D. W., M. B. Hall-Brown, and L. Pfeiffer, 2000, Smackover Reservoir Diagenesis in the Appleton Oilfield, Escambia County, Alabama (abs): Bulletin American Association of Petroleum Geologists, v. 84, p. 1680.

    Google Scholar 

  • Hennen, R. V., and R. J. Metcalf, 1929, Yates Oil Pool, Pecos County, Texas: American Association Petroleum Geologists -Bulletin, v. 13, p. 1509–1556.

    Google Scholar 

  • Heward, A. P., 1990, Salt removal and sedimentation in southern Oman, in A. H. F. Robertson, M. P. Searle, and A. C. Ries, eds., The geology and tectonics of the Oman region, Geological Society of London, Special Publication, v. 49, p. 637–652.

    Google Scholar 

  • Heydari, E., 1997, The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi: American Association of Petroleum Geologists – Bulletin, v. 81, p. 26–45.

    Google Scholar 

  • Heydari, E., 2000, Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi: Bulletin American Association of Petroleum Geologists, v. 84, p. 100–118.

    Google Scholar 

  • Hills, J. M., 1984, Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, West Texas and Southeastern New Mexico: American Association Petroleum Geologists -Bulletin, v. 68, p. 250–267.

    Google Scholar 

  • Hindle, A. D., 1997, Petroleum migration pathways and charge concentration – a three-dimensional model: Bulletin-American Association of Petroleum Geologists, v. 81, p. 1451–1481.

    Google Scholar 

  • Hite, R. J., and D. E. Anders, 1991, Petroleum and evaporites, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50: Amsterdam, Elsevier Developments in Sedimentology, p. 477–533.

    Google Scholar 

  • Holail, H. H. M., M. M. N. Shaaban, A. S. Mansour, and I. Rifai, 2005, Diagenesis of the middle Eocene upper Dammam subformation, Qatar: Petrographic and isotopic evidence: Carbonates and Evaporites, v. 20, p. 72–81.

    Google Scholar 

  • Honarmand, J., and A. Amini, 2012, Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran: Journal of Petroleum Science and Engineering, v. 81, p. 70–79.

    Google Scholar 

  • Hopkins, J. C., 1987, Contemporaneous subsidence and fluvial channel sedimentation: Upper Mannville C Pool, Berry Field, Lower Cretaceous of Alberta: Bulletin American Association of Petroleum Geologists, v. 71, p. 334–345.

    Google Scholar 

  • Hunt, J. M., 1996, Petroleum geochemistry and geology: New York, W. H. Freeman & Co., 743 p.

    Google Scholar 

  • Hurley, N. F., and R. Budros, 1990, Albion-Scipio and Stoney Point fields, U.S.A., Michigan Basin, in E. A. Beaumont, and N. H. Foster, eds., Stratigraphic traps: I: Tulsa, OK, American Association of Petroleum Geologists Treatise of Petroleum Geology, Atlas of Oil and Gas Fields, p. 1–37.

    Google Scholar 

  • Jenyon, M. K., and J. C. M. Taylor, 1983, Hydrocarbon indications associated with North Sea Zechstein shelf features: Oil and Gas Journal, v. 81, p. 155–160.

    Google Scholar 

  • Jiang, L., C. F. Cai, R. H. Worden, K. K. Li, and L. Xiang, 2013, Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China: Geofluids, v. 13, p. 232–245.

    Google Scholar 

  • Jiang, L., R. H. Worden, and C. F. Cai, 2014, Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China: Bulletin American Association Petroleum Geologists, v. 98, p. 947–973.

    Google Scholar 

  • Karlo, J. F., and R. C. Shoup, 2000, Classifications of Syndepositional Systems and Tectonic Provinces of the Northern Gulf of Mexico: Search and Discovery Article #30004 (2000), http:// www.searchanddiscovery.net/documents/karlo/index.htm.

  • Karnin, W. D., E. Idiz, D. Merkel, and E. Ruprecht, 1996, The Zechstein Stassfurt carbonate hydrocarbon system of the Thuringian Basin, Germany: Petroleum Geoscience, v. 2, p. 53–58.

    Google Scholar 

  • Kashfi, M. S., 1983, Variations in tectonic styles in the Zagros geosyncline and their relation to the diapirism of salt in Southern Iran: Journal of Petroleum Geology, v. 6, p. 195–206.

    Google Scholar 

  • Kashfi, M. S., 1985, The Pre-Zagros integrity of the Iranian Platform: Journal of Petroleum Geology, v. 8, p. 353–360.

    Google Scholar 

  • Kendall, A. C., 1983, Unconformity-associated replacement limestones after anhydrite in Mississippian of Williston Basin: American Association of Petroleum Geologists Bulletin, v. 67, p. 494–495.

    Google Scholar 

  • Kerans, C., F. J. Lucia, and R. K. Senger, 1994, Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogs: Bulletin American Association of Petroleum Geologists, v. 78, p. 181–216.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1981, Source-rock potential of evaporitic environment: Bulletin American Association of Petroleum Geologists, v. 65, p. 181–190.

    Google Scholar 

  • Klemme, H. D., 1983, The geologic setting of giant gas fields: Laxemburg, Internation Institute for Applied Systems Analysis, p. 133–160.

    Google Scholar 

  • Lamb, C. F., 1980, Painter reservoir field giant in Wyoming thrust belt: Bulletin American Association of Petroleum Geologists, v. 64, p. 638–644.

    Google Scholar 

  • Legler, B., J. W. Schneider, U. Gebhardt, D. Merten, and R. Gaupp, 2011, Lake deposits of moderate salinity as sensitive indicators of lake level fluctuations: Example from the Upper Rotliegend saline lake (Middle-Late Permian, Northeast Ger-many): Sedimentary Geology, v. 234, p. 56–69.

    Google Scholar 

  • Li, S., M. Dong, Z. Li, S. Huang, H. Qing, and E. Nickel, 2005, Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term storage in the Weyburn field: Geofluids, v. 5, p. 326–334.

    Google Scholar 

  • Li, Z., H. Goldstein, and E. K. Franseen, 2013, Ascending fresh-water-mesohaline mixing; a new scenario for dolomitization: Journal of Sedimentary Research, v. 83, p. 277–283.

    Google Scholar 

  • Lindsay, R. F., D. L. Cantrell, G. W. Hughes, T. H. Keith, H. W. Mueller III, and S. D. Russell, 2006, Ghawar Arab-D reservoir: Widespread porosity in shoaling-upward carbonate cycles, Saudi Arabia in P. M. Harris, and L. J. Weber, eds., Giant hydrocarbon reservoirs of the world: From rocks to reservoir characterization and modeling, American Association of Petroleum Geologists Memoir 88/SEPM Special Publication, p. 97–137.

    Google Scholar 

  • Lindsay, R. F., and C. G. S. C. Kendall, 1985, Depositional facies, diagenesis, and reservoir character of Mississippian cyclic carbonates in the Mission Canyon Formation, Little Knife field, Williston Basin, North Dakota, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 175–190.

    Google Scholar 

  • Lohmann, H. H., 1979, Seismic recognition of salt diapirs: Bulletin American Association of Petroleum Geologists, v. 63, p. 2097–2102.

    Google Scholar 

  • Lomando, A. J., T. P. Birdsall, and C. L. Goll, 1984, Deposition and porosity evolution of Rodessa (Lower Cretaceous) grainstone reservoirs, examples from West Purt and Bois D’Arc fields, Texas, in P. M. Harris, ed., Carbonate sands – a core workshop, v. 5, Society of Economic Paleontologists Mineralogists Core Workshop, p. 365–390.

    Google Scholar 

  • Longman, M. W., T. G. Fertal, and J. S. Glennie, 1983, Origin and geometry of Red River Dolomite reservoirs, western Williston Basin: Bulletin American Association of Petroleum Geologists, v. 67, p. 744–771.

    Google Scholar 

  • Loosveld, R. J. H., A. Bell, and J. J. M. Terken, 1996, The Tectonic Evolution of Interior Oman: GeoArabia, v. 1, p. 28–51.

    Google Scholar 

  • Lotze, F., 1957, Steinsalz und Kalisalze: Berlin, Gebruder Borntraeger.

    Google Scholar 

  • Loucks, R. G., and J. O. Crump, 1985, Vertical facies sequences of the Sunniland and Punta Gorda formations in the Lower Cretaceous South Florida Embayment; Natural Resource Management Corporation No. 31-2 Alico core: Bebout, D. G., Ratcliff, D. Lower Cretaceous depositional environments from shoreline to slope; a core workshop. Univ. Tex. at Austin, Bur. Econ. Geol., Austin, Tx, United States.

    Google Scholar 

  • Lowenstein, T. K., 1987a, Evaporite depositional fabrics in the deeply buried Jurassic Buckner Formation, Alabama: Journal of Sedimentary Petrology, v. 57, p. 108–116.

    Google Scholar 

  • Lucia, F. J., J. W. Jennings, and M. Rahnis, 2001, Permeability and rock fabric from wireline logs, Arab-D reservoir, Ghawar Field, Saudi Arabia: GeoArabia, v. 6, p. 619–646.

    Google Scholar 

  • Lucia, J. F., 1999, Carbonate reservoir characterisation: Berlin, Springer, 226 p.

    Google Scholar 

  • Luebking, G. A., M. W. Longman, and W. J. Carlisle, 2001, Unconformity-related chert/dolomite production in the Pennsylvanian Amsden Formation, Wolf Springs fields, Bull Mountains basin of central Montana: American Association of Petroleum Geologists Bulletin, v. 85, p. 131–148.

    Google Scholar 

  • Macgregor, D. S., 1996, Factors controlling the destruction or preservation of giant light oil fields: Petroleum Geoscience, v. 2, p. 197–217.

    Google Scholar 

  • Majid, A. H., 1987, Exploration Strategy in Keg River Carbonates of Northwestern Alberta, Canada (abs.): Bulletin American Association of Petroleum Geologists, v. 71, p. 588.

    Google Scholar 

  • Mancini, E. A., and D. J. Benson, 1980, Regional stratigraphy of the Upper Jurassic Smackover carbonates of southwest Alabama: Transactions of Gulf Coast Association of Geological Societies, v. 30, p. 151–165.

    Google Scholar 

  • Mancini, E. A., J. Benson, B. S. Hart, R. S. Balch, W. C. Parcell, and B. J. Panetta, 2000, Appleton field case study (eastern Gulf coastal plain): Field development model for Upper Jurassic microbial reef reservoirs associated with paleotopographic basement structures (E & P Notes): American Association Petroleum Geologists – Bulletin, v. 84, p. 1699–1717.

    Google Scholar 

  • Mann, S. D., 1988, Subaqueous Evaporites of the Buckner Member, Haynesville Formation, Northeastern Mobile County, Alabama: Gulf Coast Association of Geological Societies Transactions, v. 38, p. 187–196.

    Google Scholar 

  • Mann, S. D., 1990, Depositional facies of saltern evaporites of the Buckner Anhydrite Member of the Haynesville Formation of southwestern Alabama: Geological Society of America, Southeastern Section, 39th annual meeting. Abstracts with Programs Geological Society of America, v. 22, p. 24.

    Google Scholar 

  • Mann, S. D., and M. D. C. Kopaska, 1992, Depositional history of the Smackover-Buckner transition, eastern Mississippi interior salt basin: American Association of Petroleum Geologists Bulletin, v. 76, p. 1463.

    Google Scholar 

  • McQuillan, H., 1985, Fracture-controlled production from the Oligocene-Miocene Asmari Formation in Gachsaran and Bibi Hakimeh fields, Southwest Iran, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum resevoirs: New York, Springer-Verlag, p. 511–523.

    Google Scholar 

  • McTavish, G. J., and L. W. Vigrass, 1987, Salt dissolution and tectonics, south-central Saskatchewan, in C. G. Carlson, and J. E. Christopher, eds., Proceedings of the fifth international Williston basin symposium, v. 9, Saskatchewan Geological Society, Special Publication, p. 157–168.

    Google Scholar 

  • Meijer Drees, N. C., 1994, Chapter 10 – Devonian Elk Point Group of the Western Canada Sedimentary Basin, Atlas of the Western Canada Sedimentary Basin, Canadian Geological Survey, p. 129–147.

    Google Scholar 

  • Melas, F. F., and G. M. Friedman, 1992, Petrophysical characteristics of the Jurassic Smackover Formation, Jay Field, Conecuh embayment, Alabama and Florida: American Association of Petroleum Geologists Bulletin, v. 76, p. 81–100.

    Google Scholar 

  • Meyer, F. O., R. C. Price, I. A. Al-Ghamdi, I. M. Al-Goba, S. M. Al-Raimi, and J. C. Cole, 1996, Sequential stratigraphy of outcropping strata equivalent to Arab-D Reservoir, Wadi Nisah, Saudi Arabia: GeoArabia, v. 1, p. 435–456.

    Google Scholar 

  • Meyer, F. O., R. C. Price, and S. M. Al-Raimi, 2000, Stratigraphic and petrophysical characteristics of cored Arab-D super k intervals, Hawiyah area, Ghawar field, Saudi Arabia: GeoArabia, v. 5, p. 355–384.

    Google Scholar 

  • Miller, J. A., 1985, Depositional and reservoir facies of the Mississippian Leadville Formation, Northwest Lisbon Field, Utah, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 161–173.

    Google Scholar 

  • Mitchell, J. C., P. J. Lehmann, D. L. Cantrell, I. A. Al-Jallal, and M. A. R. Al Thagafy, 1988, Lithofacies, diagenesis and depositional sequence; Arab-D Member, Ghawar field, Saudi Arabia, in A. J. Lomando, and P. M. Harris, eds., Giant oil and gas fields – A core workshop: Tulsa, OK, SEPM core Workshop No. 12, p. 459–514.

    Google Scholar 

  • Mitra, S., 2002, Structural models of faulted detachment folds: Bulletin American Association of Petroleum Geologists, v. 86, p. 1673–1694.

    Google Scholar 

  • Mohr, M., P. A. Kukla, J. L. Urai, and G. Bresser, 2004, New Insights to the evolution and mechanisms of salt tectonics in the Central European Basin system: An integrated modeling study from Northwest Germany, In: Salt-sediment interactions and hydrocarbon prospectivity: concepts, applications and case studies for the 21st Century. Papers presented at the 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference, Houston Tx, December 5–8, 2004 (CD publication), p. 90–118.

    Google Scholar 

  • Montgomery, S. L., 1997, Ordovician Red River “B” – Horizontal oil play in the southern Williston Basin: Bulletin American Association of Petroleum Geologists, v. 81, p. 519–532.

    Google Scholar 

  • Montgomery, S. L., R. Karlewicz, and D. Ziegler, 1999b, Upper Jurassic “Reef” play, east Texas Basin: An updated overview: Part 2 – Inboard trend: American Association Petroleum Geologists – Bulletin, v. 83, p. 869–888.

    Google Scholar 

  • Montgomery, S. L., T. H. Walker, P. Wahlman, R. C. Tobin, and D. Ziegler, 1999a, Upper Jurassic “Reef” play, east Texas Basin: An updated overview: Part 1 – Background and outboard trend: American Association Petroleum Geologists – Bulletin, v. 83, p. 707–728.

    Google Scholar 

  • Moore, C. H., 1984, The upper Smackover of the Gulf rim: depositional systems, diagenesis, porosity evolution and hydrocarbon production, in W. P. S. Ventress, B. M. Bebout, B. F. Perkins, and C. H. Moore, eds., The Jurassic of the Gulf rim, Gulf Coast Section, SEPM, p. 283–307.

    Google Scholar 

  • Moore, C. H., and Y. Druckman, 1981, Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana: American Association of Petroleum Geologists Bulletin, v. 65, p. 597–628.

    Google Scholar 

  • Morrow, D. W., 2014, Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada: Indicators for dilational fracturing, dissolution or in situ replacement?: Sedimentology, v. 61, p. 915–951.

    Google Scholar 

  • Morrow, D. W., L. D. Stasiuk, and Mengwei Zhao, 2001, Dolomitisation and burial diagenesis of Devonian Slave Point and Keg River formations in the Cordova Embayment region of Northeast British Columbia (ext’d abs.): Canadian Society Petroleum Geologists, Rock the Foundation Convention, June 18–22, 2001, p. 026–1 to 026–5.

    Google Scholar 

  • Mossadegh, Z. K., D. W. Haig, T. Allan, M. H. Adabi, and A. Sadeghi, 2009, Salinity changes during Late Oligocene to Early Miocene Asmari Formation deposition, Zagros Mountains, Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 272, p. 17–36.

    Google Scholar 

  • Muir, I. D., and J. J. Dravis, 1995, Incorporation of Core and Petrographic Data – Key to Improved Management and Exploitation of Middle Devonian Keg River Carbonate Pools in Rainbow Sub-Basin, Alberta, Western Canada (abs.): Bulletin American Association of Petroleum Geologists, v. 79, p. 69.

    Google Scholar 

  • Murris, R. J., 1980, Middle East: Stratigraphic Evolution and Oil Habitat: American Association of Petroleum Geologists Bulletin, v. 64, p. 597–618.

    Google Scholar 

  • O’Dell, P. M., 1998, The Athel: A Challenging Formation in South Oman: SPE 50981; presented at the 1997 SPE Middle East Oil Show held in Bahrain, 15–18 March.

    Google Scholar 

  • Obermajer, M., M. G. Fowler, L. R. Snowdon, and R. W. Macqueen, 2000, Compositional variability of crude oils and source kerogen in the Silurian carbonate-evaporite sequences of the eastern Michigan Basin, Ontario, Canada: Bulletin of Canadian Petroleum Geology, v. 48, p. 307–322.

    Google Scholar 

  • Orszag-Sperber, F., G. Harwood, A. Kendall, and B. H. Purser, 1998, A review of evaporites of the Red Sea – Gulf of Suez rift, in B. H. Purser, and D. W. J. Bosence, eds., Sedimentation and Tectonics of Rift Basins: Red Sea – Gulf of Aden: London, Chapman and Hall, p. 409–428.

    Google Scholar 

  • Oswald, E. J., 1992, Dolomitization of a Miocene reef complex; Mallorca, Spain: doctoral thesis, State University of New York at Stony Brook, 437 p.

    Google Scholar 

  • Oswald, E. J., 1992, Dolomitization of a Miocene reef complex; Mallorca, Spain: doctoral thesis, State University of New York at Stony Brook, 437 p.

    Google Scholar 

  • Paraschiv, D., and G. Olteanu, 1970, Oil Fields in the Mid-Pliocene zone of the eastern Carpathians (District of Ploiesti, in M. T. Halbouty, ed., Geology of giant petroleum fields, American Association of Petroleum Geologists Memoir 14, p. 399–427.

    Google Scholar 

  • Parker, J. M., 1967, Salt solution and subsidence structures, Wyoming, North Dakota, and Montana: Bulletin American Association Petroleum Geologists, v. 51, p. 1929–1947.

    Google Scholar 

  • Perkins, R. D., 1991, Early and late diagenetic alteration of Ordovician Red River carbonates, Tioga Deep Field, Williston Basin, North Dakota: Bulletin American Association of Petroleum Geologists, v. 75, p. 652.

    Google Scholar 

  • Peryt, T. M., and K. Dyjaczynski, 1991, An isolated carbonate bank in the Zechstein Main Dolomite Basin, western Poland: Journal of Petroleum Geology, v. 14, p. 445–458.

    Google Scholar 

  • Peters, J. M., M. Shuster, H. A. Al-Siyabi, J. B. Filbrandt, J. P. Grotzinger, and M. J. Newall, 2003, Surface-piercing salt domes of interior North Oman, and their significance for the Ara carbonate ‘stringer’ hydrocarbon play: GeoArabia, v. 8, p. 231–270.

    Google Scholar 

  • Peterson, J. A., 1992, Aneth Field -USA, Paradox Basin, Utah, in N. H. Foster, and E. A. Beaumont, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps III: Tulsa, OK, American Association Petroleum Geologists, p. 41–82.

    Google Scholar 

  • Petta, T. J., and S. D. Rapp, 1990, Appleton Field – USA, Gulf of Mexico Basin, Alabama, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Structural Traps IV – Tectonic and nontectonic fold traps: Tulsa, OK, American Association Petroleum Geologists, p. 299–318.

    Google Scholar 

  • Pilcher, R. S., B. Kilsdonk, and J. Trude, 2011, Primary basins and their boundaries in the deep-water northern Gulf of Mexico: Origin, trap types, and petroleum system implications: Bulletin American Association Petroleum Geologists, v. 95, p. 219–240.

    Google Scholar 

  • Pollastro, R. M., 2003, Total Petroleum Systems of the Paleozoic and Jurassic, Greater Ghawar Uplift and Adjoining Provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf: U.S. Geological Survey Bulletin 2202-H, 74 p.

    Google Scholar 

  • Powers, R. W., 1962,Arabian Upper Jurassic carbonate reservoir rocks, in W. E. Ham, ed., Classification of carbonate rocks: a symposium, American Association of Petroleum Geologists Memoir, v. 1, p. 122–192.

    Google Scholar 

  • Prather, B. E., 1986, Diagenesis of Smackover Reservoir Rocks in Southeastern Gulf Coast (abs): American Association Petroleum Geologists – Bulletin, v. 70, p. 634.

    Google Scholar 

  • Prather, B. E., 1992a, Origin of Dolostone Reservoir Rocks, Smackover Formation (Oxfordian), Northeastern Gulf Coast, U.S.A.: Bulletin American Association of Petroleum Geologists, v. 76, p. 133–163.

    Google Scholar 

  • Prather, B. E., 1992b, Evolution of a Late Jurassic carbonate/evaporite platform, Conecuh Embayment, northeastern Gulf Coast, U.S.A: American Association Petroleum Geologists – Bulletin, v. 76, p. 164–190.

    Google Scholar 

  • Pu, R., and H. Qing, 2003, Pool characterization of Ordovician Midale field: Implication for Red River play in northern Williston basin, southeastern Saskatchewan, Canada: American Association Petroleum Geologists – Bulletin, v. 87, p. 1699–1715.

    Google Scholar 

  • Qing, H., and E. W. Mountjoy, 1994, Origin of dissolution vugs, caverns, and breccias in the Middle Devonian Presqu’ile barrier, host of Pine Point Mississippi Valley- type deposits: Economic Geology, v. 89, p. 858–876.

    Google Scholar 

  • Ramseyer, K., J. E. Amthor, A. Matter, T. Pettke, M. Wille, and A. E. Fallick, 2013, Primary silica precipitate at the Precambrian/ Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman: Marine and Petroleum Geology, v. 39, p. 187–197.

    Google Scholar 

  • Reinhardt, J.W., J. E.Amthor, and F. Hoogendijk, 1999, Deep Oil Exploration in an Unconventional Reservoir – The Precambrian Intra-Salt Carbonate Play of Oman (abs): Bulletin American Association of Petroleum Geologists, v. 83.

    Google Scholar 

  • Richardson, G. E., L. S. French, R. D. Baud, R. H. Peterson, C. D. Roark, T. M. Montgomery, E. G. Kazanis, G. M. Conner, and M. P. Gravois, 2004, Deepwater Gulf of Mexico 2004: America’s Expanding Frontier, v. OCS Report Number MMS 2004–021: New Orleans, U.S. Department of the Interior, Minerals Management Service New Orleans, Gulf of Mexico OCS Region, 150 p.

    Google Scholar 

  • Rowan, M. G., F. J. Peel, and B. C. Vendeville, 2004, Gravity-driven Fold Belts on Passive Margins: Chapter 9, in K. McClay, ed., Thrust tectonics and hydrocarbon systems, v. 82, American Association Petroleum Geologists – Memoir, p. 157–182.

    Google Scholar 

  • Ruzyla, K., and G. M. Friedman, 1985, Factors controlling porosity in dolomite reservoirs of the Ordovician Red River Formation, Cabin Creek field, Montana, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: A case book: New York, Springer Verlag, p. 39–58.

    Google Scholar 

  • Sahin, A., and S. Saner, 2001, Statistical distributions and correlations of petrophysical parameters in the Arab-D reservoir, Abqaiq oilfield, Eastern Saudi Arabia: Journal of Petroleum Geology, v. 24, p. 101–114.

    Google Scholar 

  • Saller, A. H., and N. Henderson, 1998, Distribution of porosity and permeability in platform dolomites – Insight from the Permian of west Texas: American Association of Petroleum Geologists Bulletin-American Association of Petroleum Geologists, v. 82, p. 1528–1550.

    Google Scholar 

  • Saller, A. H., and B. R. Moore, 1986, Dolomitization in the Smackover Formation, Escambia County, Alabama: Gulf Coast Association of Geological Societies Transactions, v. 36, p. 275–282.

    Google Scholar 

  • Saller, A. H., and B. R. Moore, 1986, Dolomitization in the Smackover Formation, Escambia County, Alabama: Gulf Coast Association of Geological Societies Transactions, v. 36, p. 275–282.

    Google Scholar 

  • Saner, S., and A. Sahin, 1999, Lithological and zonal porosity-permeability distributions in the Arab-D reservoir, Uthmaniyah field, Saudi Arabia: Bulletin-American Association of Petroleum Geologists, v. 83, p. 230–243.

    Google Scholar 

  • Sarg, J. F., 2001, The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review: Sedimentary Geology, v. 140, p. 9–42.

    Google Scholar 

  • Schmidt, V., I. A. McIlreath, and A. E. Budwill, 1985, Origin and diagenesis of Middle Devonian pinnacle reefs encased in evaporites, “A” and “E” pools, Rainbow field, Alberta, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 141–160.

    Google Scholar 

  • Schoenherr, J., R. Littke, J. L. Urai, P. A. Kukla, and Z. Rawahi, 2007a, Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen: Organic Geochemistry, v. 38, p. 1293–1318.

    Google Scholar 

  • Schoenherr, J., L. Reuning, P. A. Kukla, R. Littke, J. L. Urai, M. G. Siemann, and Z. Rawahi, 2009, Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin): Sedimentology, v. 56, p. 567–589.

    Google Scholar 

  • Schoenherr, J., Z. Schléder, J. L. Urai, P. A. Fokker, and O. Schulze, 2007c, Deformation mechanisms and rheology of Pre-cambrian rocksalt from the South Oman Salt Basin.- In (eds. ), Hannover, Germany, in M. Wallner, K. Lux, W. Minkley, and H. Hardy Jr., eds., Proc. 6th Conference on the Mechanical Behavior of Salt (SaltMech6) – Understanding of THMC Processes in Salt Hannover, Germany, p. 167–173.

    Google Scholar 

  • Schoenherr, J., J. L. Urai, P. A. Kukla, R. Littke, Z. Schleder, J.-M. Larroque, M. J. Newall, N. Al-Abry, H. A. Al-Siyabi, and Z. Rawahi, 2007b, Limits to the sealing capacity of rock salt: A case study of the infra-Cambrian Ara Salt from the South Oman salt basin: Bulletin American Association Petroleum Geologists, v. 91, p. 1541–1557.

    Google Scholar 

  • Schröder, S., J. E. Amthor, and A. Matter, 2000b, Unusual hydrocarbon reservoirs in intrasalt carbonate stringers (Birba Area, Infracambrian Ara Group, S-Oman: GeoArabia, v. 5, p. 177.

    Google Scholar 

  • Schröder, S., B. C. Schreiber, J. E. Amthor, and A. Matter, 2000a, Evaporites of the Ara Group (South Oman): an essential element of stratigraphy in an Infracambrian salt basin: Geo Arabia, v. 5, p. 176–177.

    Google Scholar 

  • Schröder, S., B. C. Schreiber, J. E. Amthor, and A. Matter, 2003, A depositional model for the terminal Neoproterozoic-Early Cambrian Ara Group evaporites in south Oman: Sedimentology, v. 50, p. 879–898.

    Google Scholar 

  • Sharland, P. R., R. Archer, D. M. Casey, R. B. Davies, S. H. Hall, A. P. Heward, A. D. Horbury, and M. D. Simmons, 2001, Arabian Plate Sequence Stratigraphy: GeoArabia Special Publication 2: Bahrain, Gulf Petrolink, 371 p.

    Google Scholar 

  • Shirley, K., 2000, Gulf of Mexico deepwater and subsalt plays:The promise of the best of both worlds: American Association of Petroleum Geologists Explorer, v. Oct. 2000.

    Google Scholar 

  • Slater, B. E., and L. B. Smith Jr., 2012, Outcrop analog for Trenton–Black River hydrothermal dolomite reservoirs, Mohawk Valley, New York: Bulletin American Association Petroleum Geologists, v. 96, p. 1369–1388.

    Google Scholar 

  • Smith, D. G., and J. R. Pullen, 1967, Hummingbird structure of southeast Saskatchewan: Canadian Petroleum Geology Bulletin, v. 15, p. 468–482.

    Google Scholar 

  • Smith, L., 2006, Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York, U.S.A.: Bulletin American Association Petroleum Geologists, v. 90, p. 1691–1711.

    Google Scholar 

  • Sneider, R. M., J. S. Sneider, G. W. Bolger, and J. W. Neasham, 1997, Comparison of Seal Capacity Determinations: Conventional Cores vs. Cuttings, in R. C. Surdam, ed., AAPG Memoir 67: Seals, Traps, and the Petroleum System.

    Google Scholar 

  • Sneider, R. M., 1995, Evaluation of Seals and Flow Barriers: Notes of a short course, sponsored by the New Orleans Geological Society, 160 p.

    Google Scholar 

  • Steinhauff, D. M., C. J. Heine, and A. E. Gregory, 2007, The Eocene Rus Anhydrite: Important Arabian Seismic Reflector and Recorder of Cenozoic History: American Association of Petroleum Geologists Search and Discovery Article #50480 © 2007 AAPG and AAPG European Regional Conference, Athens, Greece.

    Google Scholar 

  • Stenger, B., T. Pham, N. Al-Araleg, and P. Lawrence, 2003, Tilted original oil/water contact in the Arab-D reservoir, Ghawar field, Saudi Arabia: GeoArabia, v. 8, p. 9–42.

    Google Scholar 

  • Sun, S. Q., 1992, Skeletal aragonite dissolution from hypersaline seawater: a hypothesis: Sedimentary Geology, v. 77, p. 249–257.

    Google Scholar 

  • Sun, S. Q., 1995, Dolomite reservoirs; porosity evolution and reservoir characteristics: American Association of Petroleum Geologists Bulletin, v. 79, p. 186–204.

    Google Scholar 

  • Sun, S. Q., and M. Esteban, 1994, Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality – Lessons from Miocene carbonates: Bulletin American Association of Petroleum Geologists, v. 78, p. 519–543.

    Google Scholar 

  • Sweet, M. L., 1999, Interaction between aeolian, fluvial and playa environments in the Permian Upper Rotliegend Group, UK southern North Sea: Sedimentology, v. 46, p. 171–187.

    Google Scholar 

  • Swensen, R. E., 1967, Trap Mechanisms in Nisku Formation of northern Montana: Bulletin American Association of Petroleum Geologists, v. 51, p. 1948–1958.

    Google Scholar 

  • Terken, J. M. J., N. L. Frewin, and S. L. Indrelid, 2001, Petroleum systems of Oman: Charge timing and risks: Bulletin American Association of Petroleum Geologists, v. 85, p. 1817–1845.

    Google Scholar 

  • Terriere, R. T., 1976, Geology of Fairway Field, east Texas, North American oil and gas fields, American Association of Petroleum Geologists Memoir 24, p. 157–176.

    Google Scholar 

  • Tinker, S. W., and K. C. Kirby, 1991, The Keg River/Winnipegosis Petroleum System--Source to Trap Part I (abs.): Bulletin American Association of Petroleum Geologists, v. 75, p. 682.

    Google Scholar 

  • Tleel, J. W., 1973, Surface geology of the Dammam Dome, Eastern Province, Saudi Arabia: American Association Petroleum Geologists – Bulletin, v. 57, p. 558–576.

    Google Scholar 

  • Tozer, R. S. J., A. P. Choi, J. T. Pietras, and D. J. Tanasichuk, 2014, Athabasca oil sands: mega-trap restoration and charge timing: Bulletin American Association Petroleum Geologists, v. 98, p. 429–447.

    Google Scholar 

  • Trusheim, F., 1960, Mechanism of salt migration in Northern Germany: American Association Petroleum Geologists Bulletin, v. 44, p. 1519–1540.

    Google Scholar 

  • Tucker, K. E., and R. G. Chalcraft, 1991, Cyclicity in the Permian Queen Formation – U.S.M. Queen Field, Pecos County, Texas (abs): SEPM (Society for Sedimentary Geology), Core Workshop, v. 15, p. 385–428.

    Google Scholar 

  • Van Buchem, F. S. P., T. L. Allan, G. V. Laursen, M. Lotfpour, A. Moallemi, S. Monibi, H. Motiei, N. A. H. Pickard, A. R. Tahmasbi, V. Vedrenne, and B. Vincent, 2010, Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran: Geological Society, London, Special Publications, v. 329, p. 219–263.

    Google Scholar 

  • Velaj, T., 2001, Evaporites in Albania and their impact on the thrusting processes, Journal of the Balkan Geophysical Society, p. 9–18.

    Google Scholar 

  • Velaj, T., I. Davison, A. Serjani, and I. Alsop, 1999, Thrust tectonics and the role of evaporites in the Ionian zone of the Albanides: Bulletin-American Association of Petroleum Geologists, v. 83, p. 1408–1425.

    Google Scholar 

  • Verges, J., M. G. H. Goodarzi, H. Emami, R. Karpuz, J. Efstathiou, and P. Gillespie, 2011, Multiple detachment folding in Pusht-e Kuh arc, Zagros: Role of mechanical stratigraphy, in K. McClay, J. Shaw, and J. Suppe, eds., Thrust fault-related folding, v. 94: Tulsa, OK, American Association of Petroleum Geologists Memoir, p. 69–94.

    Google Scholar 

  • Versfelt Jr., P. L., 2001, Major hydrocarbon potential in Iran, in M. W. Downey, J. C. Threet, and W. A. Morgan, eds., Petroleum provinces of the twenty-first century, American Association Petroleum Geologists Memoir 74, p. 417–427.

    Google Scholar 

  • Vinet, M. J., 1982, Stratigraphy and dolomitization of the Smackover and Buckner formation (Upper Jurassic) Jay-Big Escambia Creek field area, southern Alabama-western Florida (abs): Jurassic of the Gulf Coast rim; Gulf Coast Section SEPM, p. 110–113.

    Google Scholar 

  • Wallace, M. W., R. A. Both, S. M. Ruano, P. Fenoll Hach-Ali, and T. Lees, 1994, Zebra textures from carbonate-hosted sulfide deposits; sheet cavity networks produced by fracture and solution enlargement: Economic Geology, v. 89, p. 1183–1191.

    Google Scholar 

  • Ward, R. F., C. G. S. C. Kendall, and P. M. Harris, 1986, Late Permian (Guadalupian) facies and their association with hydrocarbons: Bulletin American Association of Petroleum Geologists, v. 70, p. 239–262.

    Google Scholar 

  • Warren, J. K., 1986, Shallow water evaporitic environments and their source rock potential: Journal Sedimentary Petrology, v. 56, p. 442–454.

    Google Scholar 

  • Warren, J. K., 1989, Evaporite sedimentology: Importance in hydrocarbon accumulation: Englewood Clifs, Prentice-Hall, 285 p.

    Google Scholar 

  • Warren, J. K., 1991, Sulfate dominated sea-marginal and platform evaporative settings, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Warren, J. K., 1992, Evaporites and Their Importance to Petroleum Exploration: Manual GL508 Petroleum Geology in the IHDRDC Video Library for Exploration and Production Specialists, p. 230 pp.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J. K., S. C. George, P. J. Hamilton, and P. Tingate, 1998, Proterozoic source rocks – Sedimentology and organic characteristics of the Velkerri Formation, Northern Territory, Australia: American Association of Petroleum Geologists Bulletin, v. 82, p. 442–463.

    Google Scholar 

  • Warren, J. K., and R. H. Kempton, 1997, Evaporite Sedimentology and the Origin of Evaporite-Associated Mississippi Valley-type Sulfides in the Cadjebut Mine Area, Lennard Shelf, Canning Basin, Western Australia., in I. P. Montanez, J. M. Gregg, and K. L. Shelton, eds., Basinwide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations: Tulsa OK, SEPM Special Publication, v. 57, p. 183–205.

    Google Scholar 

  • Wendte, J., I. Al-Aasm, G. Chi, and D. Sargent, 2009, Fault/Fracture Controlled Hydrothermal Dolomitization and Associated Diagenesis of the Upper Devonian Jean Marie Member (Redknife Formation) in the July Lake Area of Northeastern British Columbia: Bulletin of Canadian Petroleum Geology, v. 57, p. 275–322.

    Google Scholar 

  • Wiebe, N. S., N. Chow, and L. D. Stasiuk, 2013, Origin of source rocks in the Middle Devonian Keg River Formation, Rainbow and Zama sub-basins, Alberta: Sedimentological and organic petrological evidence: Bulletin of Canadian Petroleum Geology, v. 61, p. 187–210.

    Google Scholar 

  • Wilson, A. O., 1985, Depositional and diagenetic facies in the Jurassic Arab-C and -D reservoirs, Qatif field, Saudi Arabia, in P. O. Roehl, and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 319–340.

    Google Scholar 

  • Wittstrom, M. D., 1990, Little Knife Field – USA, Williston Basin, North Dakota, in E. A. Beaumont, and N. H. Foster, eds., Treatise of Petroleum Geology; Atlas of Oil and Gas Fields: Stratigraphic Traps I: Tulsa, OK, American Association Petroleum Geologists, p. 159–194.

    Google Scholar 

  • Wong, S. W., P. M. O’Dell, C. J. de Pater, and J. Shaoul, 2000, FreshWater Injection Stimulation in a Deep Tight Oil Reservoir: SPE 62618: presented at the 2000 SPE/American Association of Petroleum Geologists Western Regional Meeting held in Long Beach, California, 19–23 June 2000.

    Google Scholar 

  • Worrall, J. G., and J. K. Warren, 1986, Three-stage dolomitization of the Smackover Formation, SW Alabama; evidence for near-surface and burial-derived fluids: Society of Economic Paleontologists and Mineralogists Midyear Meeting Abstracts, v. 3, p. 118–119.

    Google Scholar 

  • Wylie, A. S., and J. R. Wood, 2005, Well-log tomography and 3-D imaging of core and log-curve amplitudes in a Niagaran reef, Belle River Mills field, St. Clair County, Michigan, United States: Bulletin American Association Petroleum Geologists, v. 89, p. 409–433.

    Google Scholar 

  • Wyn Hughes, G., 1996, A New Bioevent Stratigraphy of Late Jurassic Arab-D Carbonates of Saudi Arabia: GeoArabia, v. 1, p. 417–434.

    Google Scholar 

  • Yoo, C. M., J. M. Gregg, and J. S. Shelton, 2000, Dolomitization and Dolomite Neomorphism: Trenton and Black River Limestones (Middle Ordovician) Northern Indiana, U.S.A.: Journal of Sedimentary Research, v. 70, p. 265–274.

    Google Scholar 

  • Yu, Y., Liangjie Tang, Wenjing Yang, Taizhu Huang, Nansheng Qiu, and Weiguo Li, 2014, Salt structures and hydrocarbon accumulations in the Tarim Basin, northwest China: Bulletin American Association Petroleum Geologists, v. 98, p. 135–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Hydrocarbons and Evaporites. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_10

Download citation

Publish with us

Policies and ethics