Skip to main content

The Adaptive Radiation of Notothenioid Fishes in the Waters of Antarctica

  • Chapter
  • First Online:
Extremophile Fishes

Abstract

Fishes of the perciform suborder Notothenioidei, which dominate the ichthyofauna in the freezing waters surrounding the Antarctic continent, represent one of the prime examples of adaptive radiation in a marine environment. Driven by unique adaptations, such as antifreeze glycoproteins that lower their internal freezing point, notothenioids have not only managed to adapt to sub-zero temperatures and the presence of sea ice, but also diversified into over 130 species. We here review the current knowledge about the most prominent notothenioid characteristics, how these evolved during the evolutionary history of the suborder, how they compare between Antarctic and non-Antarctic groups of notothenioids, and how they could relate to speciation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini C, Papetti C, Patarnello T et al (2013) Putative selected markers in the Chionodraco genus detected by interspecific outlier tests. Polar Biol 36:1509–1518

    Google Scholar 

  • Albertson RC, Yan Y-L, Titus TA et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4

    PubMed Central  PubMed  Google Scholar 

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32:90–110

    Google Scholar 

  • Balushkin AV (1994) Fossil notothenioid, and not gadiform, fish Proeleginops grandeastmanorum gen. sp. nov. (Perciformes, Notothenioidei, Eleginopidae) from the late Eocene found in Seymour Island (Antarctica). Voprosy Ikhtiologii 34:298–307

    Google Scholar 

  • Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40:S74–S109

    Google Scholar 

  • Balushkin AV (2012) Volodichthys gen. nov. new species of the primitive snailfish (Liparidae: Scorpaeniformes) of the southern hemishpere. Description of new species V. Solovjevae sp. nov. (Cooperation Sea, the Antarctic). J Ichthyol 52:1–10

    Google Scholar 

  • Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129

    CAS  PubMed  Google Scholar 

  • Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) Onset and role of the Antarctic circumpolar current. Deep Sea Res Pt II 54:2388–2398

    Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B 362:11–38

    Google Scholar 

  • Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Global Ecol Biogeogr 15:121–142

    Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256

    Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO et al (2013) The Tree of Life and a new classification of bony fishes. PLoS Curr 5:18

    Google Scholar 

  • Bilyk KT, DeVries AL (2010) Freezing avoidance of the Antarctic icefishes (Channichthyidae) across thermal gradients in the Southern Ocean. Polar Biol 33:203–213

    Google Scholar 

  • Bilyk KT, DeVries AL (2011) Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol A 158:382–390

    Google Scholar 

  • Bilyk KT, Evans CW, DeVries AL (2012) Heat hardening in Antarctic notothenioid fishes. Polar Biol 35:1447–1451

    Google Scholar 

  • Carvalho GR, Warren M (1991) Genetic population structure of the mackerel icefish, Champsocephalus gunnari, in Antarctic waters. Document WG-FSA-91/22. CCAMLR working paper

    Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997a) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 94:3811–3816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997b) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci U S A 94:3817–3822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng C-HC, Detrich HW III (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc B 362:2215–2232

    CAS  Google Scholar 

  • Cheng C-HC, DeVries AL (1989) Structures of antifreeze peptides from the Antarctic eel pout, Austrolycicthys brachycephalus. Biochim Biophys Acta 997:55–64

    CAS  PubMed  Google Scholar 

  • Cheng C-HC, Chen L, Near TJ, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol 20:1897–1908

    CAS  PubMed  Google Scholar 

  • Cheng C-HC, Cziko PA, Evans CW (2006) Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci U S A 103:10491–10496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claeson KM, Eastman JT, MacPhee RDE (2012) Definitive specimens of Merlucciidae (Gadiformes) from the Eocene James Ross Basin of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarct Sci 24:467–472

    Google Scholar 

  • Clark MS, Fraser KPP, Burns G, Peck LS (2008) The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol 31:171–180

    Google Scholar 

  • Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol B 90:461–473

    Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK et al (1995) Genomic remnants of alpha-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci U S A 92:1817–1821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coppes Petricorena ZL, Somero GN (2007) Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A 147:799–807

    Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466

    PubMed  Google Scholar 

  • Cziko PA, Evans CW, Cheng C-HC, DeVries AL (2006) Freezing resistance of antifreeze-deficient larval Antarctic fish. J Exp Biol 209:407–420

    CAS  PubMed  Google Scholar 

  • Damerau M, Matschiner M, Salzburger W, Hanel R (2012) Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biol 35:1073–1086

    Google Scholar 

  • Damerau M, Matschiner M, Salzburger W, Hanel R (2014) Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae). Mol Ecol 23:284–299

    CAS  Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    CAS  PubMed  Google Scholar 

  • Derome N, Chen W-J, Dettaï A, Bonillo CÉ, Lecointre G (2002) Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phylogenet Evol 24:139–152

    CAS  PubMed  Google Scholar 

  • Dettaï A, Lecointre G (2004) In search of notothenioid (Teleostei) relatives. Antarct Sci 16:71–85

    Google Scholar 

  • Dettai A, Berkani M, Lautrédou A-C et al (2012) Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Mar Genomics 8:49–58

    CAS  PubMed  Google Scholar 

  • DeVries AL, Cheng CH (2005) Antifreeze proteins and organismal freezing avoidance in polar fishes. In: Farrell AP, Steffensen JF (eds) Fish physiology, vol 22. Academic Press, San Diego, CA, pp 155–201

    Google Scholar 

  • DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353

    Google Scholar 

  • di Prisco G, Cocca E, Parker SK, Detrich HW III (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    PubMed  Google Scholar 

  • Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specializations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430–436

    Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego, CA

    Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarct Sci 12:276–287

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of nonAntarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano, pp 3–26

    Google Scholar 

  • Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20

    Google Scholar 

  • Eastman JT, Grande L (1991) Late Eocene gadiform (Teleostei) skull from Seymour Island, Antarctic Peninsula. Antarct Sci 3:87–95

    Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol 57:84–102

    Google Scholar 

  • Evans JD, Page LM (2003) Distribution and relative size of the swim bladder in Percina, with comparisons to Etheostoma, Crystallaria, and Ammocrypta (Teleostei: Percidae). Environ Biol Fish 66:61–65

    Google Scholar 

  • Evans CW, Gubala V, Nooney R et al (2011) How do Antarctic notothenioid fishes cope with internal ice? A novel function for antifreeze glycoproteins. Antarct Sci 23:57–64

    Google Scholar 

  • Evans CW, Hellman L, Middleditch M et al (2012) Synthesis and recycling of antifreeze glycoproteins in polar fishes. Antarct Sci 24:259–268

    Google Scholar 

  • Fernández DA, Ceballos SG, Malanga G, Boy CC, Vanella FA (2012) Buoyancy of sub-Antarctic notothenioids including the sister lineage of all other notothenioids (Bovichtidae). Polar Biol 35:99–106

    Google Scholar 

  • Fletcher GL, Hew C-L, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    CAS  PubMed  Google Scholar 

  • Foster TD (1984) The marine environment. In: Laws RM (ed) Antarctic ecology, vol 2. Academic Press, London, pp 345–371

    Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    CAS  PubMed  Google Scholar 

  • Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci U S A 102:18040–18045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quaternary Sci Rev 24:869–896

    Google Scholar 

  • Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E (2011) Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Mol Ecol 20:1936–1951

    PubMed  Google Scholar 

  • Gordon AL (1971) Oceanography of Antarctic waters. In: Reid JL (ed) Antarctic oceanology I. American Geophysical Union, Washington, DC, pp 169–203

    Google Scholar 

  • Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 3:e2616

    PubMed Central  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  • Hofmann GE, Lund SG, Place SP, Whitmer AC (2005) Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes. J Exp Mar Biol Ecol 316:79–89

    CAS  Google Scholar 

  • Hsiao K-C, Cheng C-HC, Fernandes IE, Detrich HW III, DeVries AL (1990) An antifreeze glycopeptide gene from the antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Natl Acad Sci U S A 87:9265–9269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingólfsson Ó (2004) Quaternary glacial and climate history of Antarctica. Dev Quaternary Sci 2C:3–44

    Google Scholar 

  • Ivany LC, Lohmann KC, Hasiuk F et al (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol Soc Am Bull 120:659–678

    CAS  Google Scholar 

  • Janko K, Lecointre G, DeVries AL et al (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7:220

    PubMed Central  PubMed  Google Scholar 

  • Janko K, Marshall C, Musilová Z et al (2011) Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): phylogenetic approach and test of the early-radiation event. Mol Phylogenet Evol 60:305–316

    PubMed  Google Scholar 

  • Johnston IA, Fernández DA, Calvo J et al (2003) Reduction in muscle fibre number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective. J Exp Biol 206:2595–2609

    PubMed  Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Google Scholar 

  • Koblmüller S, Egger B, Sturmbauer C, Sefc KM (2010) Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol Phylogenet Evol 55:318–334

    PubMed  Google Scholar 

  • La Mesa M, Ashford J (2008) Age and early life history of juvenile Scotia Sea icefish, Chaenocephalus aceratus, from Elephant and the South Shetland Islands. Polar Biol 31:221–228

    Google Scholar 

  • La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338

    Google Scholar 

  • Last PR, Balushkin AV, Hutchins JB (2002) Halaphritis platycephala (Notothenioidei: Bovichtidae): a new genus and species of temperate icefish from Southeastern Australia. Copeia 2002:433–440

    Google Scholar 

  • Lautrédou A-C, Hinsinger DD, Gallut C et al (2012) Phylogenetic footprints of an Antarctic radiation: the Trematominae (Notothenioidei, Teleostei). Mol Phylogenet Evol 65:87–101

    PubMed  Google Scholar 

  • Lautrédou A-C, Motomura H, Gallut C et al (2013) New nuclear markers and exploration of the relationships among Serraniformes (Acanthomorpha, Teleostei): the importance of working at multiple scales. Mol Phylogenet Evol 67:140–155

    PubMed  Google Scholar 

  • Lewis DB (1976) Studies of the biology of the lesser weever. J Fish Biol 8:127–138

    Google Scholar 

  • Loeb VJ, Kellermann AK, Koubbi P, North AW, White MG (1993) Antarctic larval fish assemblages: a review. Bull Mar Sci 53:416–449

    Google Scholar 

  • Long DJ (1992) Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctic Peninsula. J Vertebr Paleontol 12:11–32

    Google Scholar 

  • Matallanas J (2008) Description of Gosztonyia antarctica, a new genus and species of Zoarcidae (Teleostei: Perciformes) from the Antarctic Ocean. Polar Biol 32:15–19

    Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587

    CAS  PubMed  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the notothenioid adaptive radiation. PLoS One 6:e18911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol 22:2362–2368

    CAS  PubMed  Google Scholar 

  • Naish TR, Woolfe KJ, Barrett PJ et al (2001) Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413:719–723

    CAS  PubMed  Google Scholar 

  • Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44

    Google Scholar 

  • Near TJ, Cheng C-HC (2008) Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 47:1–9

    Google Scholar 

  • Near TJ, Pesavento JJ, Cheng C-HC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891

    CAS  PubMed  Google Scholar 

  • Near TJ, Parker SK, Detrich HW III (2006) A genomic fossil reveals key steps in hemoglobin loss by the Antarctic icefishes. Mol Biol Evol 23:2008–2016

    CAS  PubMed  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL et al (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A 109:3434–3439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson JS (2006) Fishes of the world. John Wiley, Hoboken, NJ

    Google Scholar 

  • Nong GT, Najjar RG, Seidov D, Peterson WH (2000) Simulation of ocean temperature change due to the opening of Drake Passage. Geophys Res Lett 27:2689–2692

    Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, New York, NY

    Google Scholar 

  • Ojeda FP, Labra FA, Muñoz AA (2000) Biogeographic patterns of Chilean littoral fishes. Revista Chilena de Historia Natural 73:625–641

    Google Scholar 

  • Olney MP, Bohaty SM, Harwood DM (2009) Creania lacyae gen. nov et sp. nov and Synedropsis cheethamii sp. nov., fossil indicators of Antarctic sea ice? Diatom Res 24:357–375

    Google Scholar 

  • Pequeño RG (2000) Peces del crucero Cimar-Fiordo 3, a los canales del sur de Magallanes (ca. 55°S), Chile. Ciencia y Tecnología del Mar 23:83–94

    Google Scholar 

  • Petit JR, Jouzel J, Barkov NI et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    CAS  Google Scholar 

  • Place SP, Hofmann GE (2005) Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biol 28:261–267

    Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol-Reg I 287:R429–R436

    CAS  Google Scholar 

  • Præbel K, Hunt B, Hunt LH, DeVries AL (2009) The presence and quantification of splenic ice in the McMurdo Sound Notothenioid fish, Pagothenia borchgrevinki (Boulenger, 1902). Comp Biochem Physiol A 154:564–569

    Google Scholar 

  • Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans R Soc B 362:2191–2214

    CAS  Google Scholar 

  • Rogers AD, Morley S, Fitzcharles E, Jarvis K, Belchier M (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean Sectors of the Southern Ocean. Mar Biol 149:915–924

    Google Scholar 

  • Rutschmann S, Matschiner M, Damerau M et al (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721

    PubMed  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    CAS  PubMed  Google Scholar 

  • Salzburger W, Meyer A (2004) The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290

    CAS  PubMed  Google Scholar 

  • Salzburger W, Van Bocxlaer B, Cohen AS (2014) Ecology and evolution of the African Great Lakes and their faunas. Annu Rev Ecol Evol Syst 45:519–545

    Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 428:428–430

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York, NY

    Google Scholar 

  • Shaw PW, Arkhipkin AI, Al-Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Mol Ecol 13:3293–3303

    CAS  PubMed  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770

    CAS  PubMed  Google Scholar 

  • Sidell BD, O’Brien K (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802

    CAS  PubMed  Google Scholar 

  • Smith P, Gaffney PM (2000) Toothfish stock structure revealed with DNA methods. Water Atmos 8:17–18

    Google Scholar 

  • Smith PJ, Gaffney PM (2005) Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers. CCAMLR Sci 12:43–51

    Google Scholar 

  • Stankovic A, Spalik K, Kamler E, Borsuk P, Weglenski P (2002) Recent origin of sub-Antarctic notothenioids. Polar Biol 25:203–205

    Google Scholar 

  • Stein DL (2012) Snailfishes (Family Liparidae) of the Ross Sea, Antarctica, and closely adjacent waters. Zootaxa 3285:1–120

    Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    CAS  PubMed  Google Scholar 

  • Team CRS (2000) Studies from the Cape Roberts project, Ross Sea, Antarctica. Initial report on CRP-3. Terra Antarctica 7:1–209

    Google Scholar 

  • Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    PubMed  Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction. Daya Publishing House, Delhi

    Google Scholar 

  • Volckaert FAM, Rock J, Putte AP (2012) Connectivity and molecular ecology of Antarctic fishes. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments, vol 1. Springer, Berlin, pp 75–96

    Google Scholar 

  • von der Heyden BP, Roychoudhury AN, Mtshali TN, Tyliszczak T, Myneni SCB (2012) Chemically and geographically distinct solid-phase iron pools in the Southern Ocean. Science 338:1199–1201

    PubMed  Google Scholar 

  • Wilson LAB, Colombo M, Hanel R, Salzburger W, Sánchez-Villagra MR (2013) Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol Evol 3:3166–3182

    PubMed Central  PubMed  Google Scholar 

  • Yoder JB, Clancey E, Des Roches S et al (2010) Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23:1581–1596

    CAS  PubMed  Google Scholar 

  • Zachos JC, Quinn TM, Salamy KA (1996) High resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11:251–266

    Google Scholar 

  • Zane L, Bargelloni L, Bortolotto E et al (2006) Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum. Mol Ecol 15:4499–4511

    CAS  PubMed  Google Scholar 

  • Zhuang X (2013) Creating sense from non-sense DNA: de novo genesis and evolutionary history of antifreeze glycoprotein gene in northern cod fishes (Gadidae). Dissertation, School of Integrative Biology, University of Illinois at Urbana-Champaign

    Google Scholar 

Download references

Acknowledgements

We thank the editors and Joseph Eastman for valuable comments on the manuscript. The authors of this book chapter have been supported by funding from the Swiss National Science Foundation (SNF grants PBBSP3-138680 to MM and CRSII3-136293 to WS), the European Research Council (Starting Grant “INTERGENADAPT” to WS), the Volkswagen Foundation (grant I/83 548 to MM), and the German Research Foundation (grant HA 4328/4 to RH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Matschiner or Walter Salzburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matschiner, M., Colombo, M., Damerau, M., Ceballos, S., Hanel, R., Salzburger, W. (2015). The Adaptive Radiation of Notothenioid Fishes in the Waters of Antarctica. In: Riesch, R., Tobler, M., Plath, M. (eds) Extremophile Fishes. Springer, Cham. https://doi.org/10.1007/978-3-319-13362-1_3

Download citation

Publish with us

Policies and ethics