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Abstract. A bubble size distribution gives relevant insight into mixing
processes where gas-liquid phases are present. The distribution estima-
tion is challenging since accurate bubble detection from images captured
from industrial processes is a complicated task due to varying lighting
conditions which change the appearance of bubbles considerably. In this
paper, we propose a new method for estimating the bubble size distribu-
tion based on the image power spectrum. The method works by calcu-
lating the power spectrum for a number of frequency bins and learning
the linear relationship between the power spectrum and the bubble size
distribution. Since the detection of individual bubbles is not needed, the
proposed method is remarkably faster than the traditional approaches.
The method was compared to a geometry-based bubble detection method
with both synthetic and industrial image data. The proposed method
outperformed the bubble detection based approach especially in the cases
where bubbles were small and the number of bubbles high.

1 Introduction

This paper focuses on estimating the size distribution of bubbles, or more gen-
erally, transparent approximately spherical objects in a liquid. The research
is driven by the pulpmaking industry, in particular the development of the
pulp delignification process. Pulp delignification with oxygen is a very energy-
intensive operation. To optimize and control the process, it is essential to be
able to characterize the process, especially the sizes of the oxygen bubbles. The
recent progress in camera and illumination technologies has made it possible to
capture images inside the process machines. In [11] an imaging setup applied to
the pulp mill environment was presented. From the produced images an expert
could determine the bubble size distribution by manually marking the bubbles.
However, manual analysis of the images is very time-consuming, motivating the
development of automatic methods for estimating the bubble size distribution.

The typical approach to estimate the bubble size distribution is to first de-
tect and segment the bubbles, and to compute the size of each detected bubble
separately [13]. The bubble detection problem is not easy to solve because the
bubbles are transparent and the illumination conditions are challenging when
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imaging inside an industrial process, which causes the bubble appearance to
vary. In the images, bubbles appear as roughly circular objects which motivates
to solve the problem as the detection of circles. Two common approaches are used
to detect circular objects: geometry-based and appearance-based approaches. In
the geometry-based approach a circular model parameterized by its center and
radius is fitted to the image edge map. These methods typically utilize a voting
technique, such as the Hough Transform (HT) [4] or its modifications [9]. The
geometry-based approaches suffer from a large number of false positives and are
sensitive to noise. Moreover, they often fail to detect small blob-like bubbles
that do not have a ridge edge expected by the model [13]. The appearance-based
approach uses typically a sliding window where a template of the object of inter-
est and the grayscale image are convolved. The template matching techniques
are difficult to apply for the bubble detection since the bubbles may appear
differently depending on the bubble location in the image and lighting.

Typical images from a real industrial process contain a huge amount of bubbles
and have a low image quality because of harsh conditions (see Fig. 1). Detecting
each individual bubble, which can overlap because of their transparent nature,
is difficult and also time consuming. In this work, we propose a novel power
spectrum based method to estimate the bubble size distribution directly from
the images. This makes the detection of bubbles unnecessary and, therefore, the
problems mentioned above can be avoided. The method is validated with both
synthetic and novel image data from a real industrial environment.

(a) (b)

Fig. 1. Examples of pulp suspension images with different process variables: (a) 1000
rpm; (b) 1380 rpm

2 Related Work

Image power spectrum has been a popular tool for texture analysis or discrim-
ination [6,7,10]. In texture analysis, local power spectrum, often implemented
using Gabor filters, is used to be able to discriminate between different textures
in the different parts of an image. In our case, we are not interested in the local
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power spectrum, but instead the power spectrum of the whole image. The global
power spectrum has been used in [12] to classificy real-world images, for exam-
ple, whether the scene is natural or artificial (man-made). Other applications
have been the visual quality estimation of transmitted images without having
the reference image [14] and the detection of hidden messages in images [1].

A method for determining bubble size distribution has been presented in [5,8].
The method requires a binary image where the bubbles and background are
separated. In our case with images from the industrial process (Fig. 1) that would
be very difficult to do with sufficient quality. Therefore, as the reference method
we use the bubble detection method based on concentric circular arrangements
(CCA) [13] developed particularly for pulp suspension images. It has been shown
to achieve good performance in the given task when the amount of bubbles is
reasonable. The main problem of the method is the low detection rate of small
blob-like bubbles with no ridge edge.

3 The Estimation Method

The method presented here for estimating the bubble count or volume distribu-
tion works in the frequency domain and uses the power spectrum of the image [2].
Fourier transform of two signals (here bubbles) is the same as taking the Fourier
transform for them separately and adding them up. Therefore, the Fourier trans-
form of an image consisting of bubbles is the same as Fourier transforms of images
of separate bubbles. However, the power spectrum of two combined signals is not
the same as their separate power spectra combined because the phase (location)
difference can even cause them to nullify each other. In the case of a large set of
bubbles located randomly it is reasonable that their phases overlap predictably
on average so that the distribution can still be determined with a good accuracy
from the power spectrum.

The method consists of the following steps:

1. Calculate the power spectrum of an image using L frequency bands.
2. Use principal component analysis (PCA) to reduce the data to M dimen-

sions.
3. Use multivariate linear regression to learn the dependency between the power

spectrum and bubble count or volume distribution.

The power spectrum is a vector of the portion of a signal power falling into
specified frequency bins. It is acquired by applying 2-D discrete Fourier transform
to the signal (image) and computing the energy belonging to L linearly spaced
frequency bins, producing a vector Pi for an image i. The frequency range is
limited at the lower end because we have knowledge of the maximum size of the
bubbles, and therefore, the lowest possible frequencies caused by actual bubbles.

To reduce the dimensionality, principal component analysis (PCA) is used.
The principal components are calculated from the matrix containing power spec-
tra of N images, Pi, i = [1 . . .N ]. The M principal components can then be used
to reduce the dimensionality of the original power spectrum Pi to pi which is a
vector with M components.
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Multivariate linear regression [3] is used to find out the relationship between
vector pi and the bubble count or volume distribution Di in the image (example
in Fig. 2). The distributions used are histograms with K bins, with K = 10 in
the example and all experiments. The multivariate linear regression is defined as

⎛
⎜⎝

D1,1 . . . D1,K

...
DN,1 . . . DN,K

⎞
⎟⎠ =

⎛
⎜⎝

p1,1 . . . p1,M 1
... 1

pN,1 . . . pN,M 1

⎞
⎟⎠X+ ε (1)

where X is the M + 1 ×K matrix to be estimated and ε is the noise term. X
is solved as a linear least squares estimation problem. The distribution Dj for a
new image j can be estimated by calculating the power spectrum Pj , using PCA
to reduce its dimensionality and getting pj and then

Dj = (pj,1 . . . pj,M1)X. (2)

4 Experiments

In all experiments, the power spectrum was calculated from 19 linearly spaced
frequency bins, f = [0.05, 0.5], and dimensionality was reduced with PCA to 5.

Synthetic Data. To properly evaluate the method performance, a ground truth
is needed for either the spatial locations and sizes of the bubbles, or at least their
size distribution. Taking into account the nature of the real image data produc-
ing either one accurately for a large number of images is infeasible. Therefore,
synthetic image data was used to study the methods in detail.

Example synthetic images and bubble size distribution histograms can be seen
in Fig. 2. In the first case with a low number of bubbles, Fig. 2a, the CCA method
found all bubbles except for some of the smallest one. Some false positives are
caused by detectiong being in slightly wrong location or too large. In general,
the bubble size distribution histograms by both number and volume are close
to the ground truth and the differences are caused by not detecting some of the
smallest bubbles and overestimating the size for some of the others. The power
spectrum based method gives a better estimate for the number of bubbles, but
in the volume histogram it cannot detect the "spikes" caused by large bubbles
and gives a smoother distribution than the ground truth.

In the example with more bubbles, Fig. 2(b), CCA missed the majority of the
small bubbles and the false detection of one large bubble (top middle) caused
a large discrepancy in the bubble volume histogram. With the power spectrum
based method the number of bubbles is very close to the true distribution. The
volume estimate is not as accurate, but the general shape of the distribution is
relatively close to true.

For the next experiment, a synthetic time series data set with 1200 images was
generated. The data set mimics the properties of real images of the dispersion
process where the bubble distribution is affected by the rotor speed: with high
rpm, the bubble size distribution changes so that the number of small bubbles
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Artificial bubble image
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Fig. 2. Examples of synthetic bubble image and bubbles detected by the CCA method
(left) and bubble size distribution histograms (right): (a) 35 bubbles; (b) 300 bubbles

increases and large bubbles become rare. The synthetic data set imitates this
effect of increasing the rotor speed. Each image in the set is independent in
the sense that the same bubbles do not move between images; every image is
randomly generated. Two images from the sequence can be seen in Figs. 2a (98th
image) and 2b (877th image).

Fig. 3 shows the ground truth and the estimated total number and total
volume of bubbles. All results are presented as the average of 20 images to remove
high variations between single images. The power spectrum based method follows
the true number of bubbles very accurately through the series. For the total
volume, the ground truth includes more variations caused by large individual
bubbles than the power spectrum estimates. CCA starts well with the low bubble
count, but as the bubble count increases, it cannot detect the majority of the
bubbles and the volume estimate even decreases during the series.

The mean absolute errors in the detected bubble count and volume histograms
are shown in Fig. 3(c-d). In this case, not only the total number and total volume
have to match, but also their distribution. For the number of bubbles, the power
spectrum based method gives very accurate distributions for the whole time
series, but CCA suffers from not being able to detect small bubbles when their
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Fig. 3. Experiments with the synthetic time series data set: (a) Total number of bub-
bles; (b) Total volume of bubbles; (c) Mean absolute errors in total number of bubbles;
(d) Mean absolute errors in total volume of bubbles.

number increases. For the volume histogram, CCA starts slightly better than the
power spectrum based method because it can detect large individual bubbles
present in the early images, but later on the power spectrum based method
performs better.

Real Data. A trial session was performed in a softwood kraft pulp mill. Images
were gathered from the oxygen delignification process of a pulp fiber line. The
used imaging setup consisted of an AVT Guppy Pro F-503B camera with a
picture size of 2588 × 1940 pixels, a Richard Wolf 51 camera adapter and a
Richard Wolf borescope. A Cavitar Cavilux Smart pulsed diode laser light source
was used for illumination. The experiments were performed with varied mixer
rotor speeds from 900 rpm to 1380 rpm (see examples in Fig. 1). All other process
variables were kept constant during the trial session. The imaging setup was used
in two locations of the pulp fiber line. In each location, 10 images were captured
with every used rotor speed, and for them the ground truth (bubble locations
and sizes) were manually marked. Only the central 1482× 1482 portions of the
images were used.
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The results with the real data are presented in Fig. 4. As with the synthetic
data and the low rotor speed, CCA works well. When the speed is increased and
the bubble size distribution starts to favor small bubbles, however, its detection
performance suffers. The power spectrum based method can capture the true
distribution much better with high speeds.

The average computation time for the MATLAB implementation of the power
spectrum based method was 0.6s per image while the CCA method took 5.1s
with a computer equipped with Intel Core i5 processor running at 3.4GHz.
A much faster implementation of the power spectrum method could be made
because currently most of the time is wasted in various overheads and not on the
only computationally intensive operation, fast Fourier transform. This makes the
power spectrum based method more suitable for the industrial process control
systems where real-time performance is required.
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Fig. 4. Bubble count and volume distributions with real data

5 Conclusions

In this paper, a new method for estimating the bubble size distribution was pro-
posed. The method is based on the image power spectrum and it was compared
to a geometry-based bubble detection method (CCA) with both synthetic and
industrial image data. In the experiments, the performance of the estimation
method was evaluated using synthetic time series data which mimics the effect
of increasing mixer rotor speed. The estimation method could detect the chang-
ing bubble size distribution well, while the reference method struggled when
there was a large number of bubbles. Similar results were obtained with the real
data. In the future the method could be used directly to classify the state of
the dispersion, i.e., is it good or if some process parameter should be changed.
This, however, is a new area for the pulp industry and requires further study of
dispersion in oxygen delignification process.
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