Skip to main content

Buildings: Heating and Cooling

  • Chapter
  • First Online:
Economic Evaluation of Climate Change Impacts

Abstract

While energy savings in buildings is among the key prerequisites for a low-carbon future, our ability to maintain temperatures in buildings within a specific comfort range, and thus our demand for heating and cooling energy, are also highly sensitive to climate change. We quantify two main impact chains: (1) a higher temperature in winter leads to a reduction of heating energy demand and (2) a higher temperature in summer leads to an increase in demand for cooling. The demand for cooling energy depends largely on the future uptake of air conditioning in the building sector and is subject to considerable uncertainty. On quantifying these two impacts for the example of Austria for the period around 2050 a net saving of about 230 million euros per year is found, triggering slightly positive effects on welfare and GDP. The result is depending on the development of energy prices and in particular by the ratio of electricity to fuel price in the heating sector. The results show that, in absolute terms, the energy reduction in heating is much higher than the increased energy demand for cooling for the time horizon and the geographical location investigated. This stems from the fact that energy demand for air conditioning in Austria in 2008 was only 0.4–0.5 % of the final energy demand for heating. The impacts and costs resulting from a strong increase in electricity peak loads in summer are investigated in Chap. 14 (Electricity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    On the relation between indoor comfort and control strategies see e.g. Roberts (2008).

  2. 2.

    Based on extrapolation of “Energieszenarien bis 2050: Wärmebedarf der Kleinverbraucher“ on the reference scenario.

  3. 3.

    Climate adjustment has been carried out for the year 2010 according to the mid-range climate scenario of Chap. 5 (Climate).

  4. 4.

    We are aware that the RCP scenarios derived for the IPCC AR5 would be more up-to date. However, at the time when the analyses in this chapter started, these results were not yet available.

  5. 5.

    A map of these clusters is presented in the supplementary materials (Supplementary Material Fig. 13.1).

  6. 6.

    In fact, energy prices may also be affected by climate change. This is discussed in Chap. 14 (Electricity).

  7. 7.

    The full list of socio-economic factors is shown in the supplementary materials (Supplementary Material Tables 13.1 and 13.2.)

  8. 8.

    The “rebound effect” is neglected in the macroeconomic assessment. Some aspects of the rebound-effect are covered implicitly in Invert/EE-Lab (increased effective indoor temperature after building renovation).

  9. 9.

    Sector “Energy” is providing electricity, gas and district heat; sector “Coke and Petroleum Products” is providing coke and fuel oil; sectors “Forestry” and “Trade” are providing biomass; sector “Trade” is providing air conditioners.

References

  • Aguiar R, Oliveira M, Gonccedilalves H (2002) Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study. Build Serv Eng Res Technol 23:223–231. doi:10.1191/0143624402bt045oa

    Article  Google Scholar 

  • Beccali M, Cellura M, Brano VL, Marvuglia A (2007) Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area. Renew Sust Energ Rev 12(8):2040–2065

    Article  Google Scholar 

  • Bednar T, Neusser M, Gladt M (2013) Modelling heating and cooling energy demand of buildings under climate change. Working paper in the frame of the project PRESENCE, Wien

    Google Scholar 

  • Bundesministerium für Wirtschaft, Familie und Jugend (2010) Nationaler Aktionsplan 2010 für erneuerbare Energie für Österreich (NREAP-AT) gemäß der Richtlinie 2009/28/EG des Europäischen Parlaments und des Rates

    Google Scholar 

  • Cartalis C, Synodinou A, Proedrou M, Tsangrassoulis A, Santamouris M (2001) Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Convers Manag 42:1647–1656

    Article  Google Scholar 

  • EPBD Recast (2010) European Parliament and the council, 2010. Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings (recast)

    Google Scholar 

  • Giannakopoulos C, Psiloglou BE (2006) Trends in energy load demand for Athens, Greece: weather and non-weather related factors. Climate Res 31:97

    Article  Google Scholar 

  • Haas R, Biermayr P, Müller A, Kranzl L, Schriefl E (2007) Wärme und Kälte aus Erneuerbaren 2030. Studie im Auftrag der Wirtschaftskammer Österreich. Dachverband Energie-Klima, Wien

    Google Scholar 

  • Haiden T, Kann A, Wittmann C, Pistotnik G, Bica B, Gruber C (2011a) The integrated nowcasting through comprehensive analysis(INCA) system and its validation over the eastern Alpine region. Weather Forecast 26:166–183

    Article  Google Scholar 

  • Heindl W, Kornicki T, Sigmund A (1990) Erstellung halbsynthetischer Klimadatensätze für meteorologische Messstationen, Project report

    Google Scholar 

  • Isaac M, van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37:507–521. doi:10.1016/j.enpol.2008.09.051

    Article  Google Scholar 

  • Kranzl L, Formayer H, Haas R, Kalt G, Manfred L, Müller A, Nachtnebel HP, Redl C, Schörghuber S, Seidl R, Stanzel P (2010) Ableitung von prioritären Maßnahmen zur Adaption des Energiesystems an den Klimawandel.Endbericht im Rahmen der Programmlinie “Energie der Zukunft”, Wien

    Google Scholar 

  • Kranzl L, Hummel M, Müller A, Steinbach J (2013a) Renewable heating: perspectives and the impact of policy instruments. Energy Policy 59:44–58. doi:10.1016/j.enpol.2013.03.050

    Article  Google Scholar 

  • Kranzl L, Matzenberger J, Totschnig G, Toleikyte A, Schicker I, Formayer H, Gorgas T, Stanzel P, Nachtnebel HP, Bednar T, Gladt M, Neusser M (2013b) Modelling climate change impact on energy systems. Working Paper for the Second Review-Workshop in the project PRESENCE, Vienna

    Google Scholar 

  • Kranzl L, Matzenberger J, Totschnig G, Toleikyte A, Schicker I, Formayer H, Gorgas T, Stanzel P, Nachtnebel HP, Bednar T, Gladt M, Neusser M (2014) Power through resilience of energy system. Final report of the project PRESENCE. Project in the frame of the Austrian climate research program, Vienna

    Google Scholar 

  • Moral-Carcedo J, Vicéns-Otero J (2005) Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Econ 27:477–494. doi:10.1016/j.eneco.2005.01.003

    Article  Google Scholar 

  • Müller A (2012) Stochastic building simulation, working paper, Berkeley. http://www.marshallplan.at/images/papers_scholarship/2012/Mueller.pdf

  • Müller A, Kranzl L (2013) Energieszenarien bis 2030: Wärmebedarf der Kleinverbraucher. Ein Projekt im Rahmen der Erstellung von energiewirtschaftlichen Inputparametern und Szenarien zur Erfüllung der Berichtspflichten des Monitoring Mechanisms, Wien

    Google Scholar 

  • Müller A, Biermayr P, Kranzl L, Haas R, Altenburger F, Weiss W, Bergmann I, Friedl G, Haslinger W, Heimrath R, Ohnmacht R (2010) Heizen 2050: Systeme zur Wärmebereitstellung und Raumklimatisierung im österreichischen Gebäudebestand: Technologische Anforderungen bis zum Jahr 2050. Gefördert vom Klima- und Energiefonds

    Google Scholar 

  • Müller A, Hummel M, Kranzl L, Bednar T, Neusser M (2014, in press) Climate change impact on heating and cooling: the example of Austria. Energy Build

    Google Scholar 

  • OIB (2011) Leitfaden Energietechnisches Verhalten von Gebäuden. OIB-330.6-111/11-010. Österreichisches Institut für Bauordnung, Wien

    Google Scholar 

  • OIB (2012) OIB-Dokument zur Definition des Niedrigstenergiegebäudes und zur Festlegung von Zwischenzielen in einem „Nationalen Plan“gemäß Artikel 9 (3) zu 2010/31/EU. Österreichisches Institut für Bauordnung, Wien

    Google Scholar 

  • Olonscheck M, Holsten A, Kropp JP (2011) Heating and cooling energy demand and related emissions of the German residential building stock under climate change. Energy Policy 39:4795–4806. doi:10.1016/j.enpol.2011.06.041

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115. doi: 10.1029/2009JD013568

    Google Scholar 

  • Prettenthaler F, Gobiet A (2008) Heizen und Kühlen im Klimawandel—Teil 1, Studien zum Klimawandel in Österreich. Verlag der Österreichischen Akademie der Wissenschaften, Wien

    Google Scholar 

  • Roberts S (2008) Altering existing buildings in the UK. Energy Policy 36:4482–4486. doi:10.1016/j.enpol.2008.09.023

    Article  Google Scholar 

  • Schicker I, Formayer H (2012) Working paper on climate change scenarios. In the frame of the project PRESENCE, Wien

    Google Scholar 

  • Statistik Austria (2011) Energiebilanzen Österreich 1970–2010. Statistik Austria, Wien

    Google Scholar 

  • Toleikyte A, Hummel M, Kranzl L (2012) Discussion of climate sensitive scenarios for the heating and cooling sectors in selected European countries. Working paper of the project PRESENCE, Wien

    Google Scholar 

  • Zangheri P, Armani R, Pietrobon M, Pagliano L, Fernandez-Boneta M, Müller A (2014) Heating and cooling energy demand and loads for building types in different countries of the EU. Report in the frame of the IEE project ENTRANZE

    Google Scholar 

  • Zoll R (2010) Szenarien zur Entwicklung der Gebäudeklimatisierung in Österreich. Diplomarbeit an der Technischen Universität Wien, Institut für elektrische Anlagen und Energiewirtschaft

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Kranzl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kranzl, L. et al. (2015). Buildings: Heating and Cooling. In: Steininger, K., König, M., Bednar-Friedl, B., Kranzl, L., Loibl, W., Prettenthaler, F. (eds) Economic Evaluation of Climate Change Impacts. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-12457-5_13

Download citation

Publish with us

Policies and ethics