Skip to main content

The Firewall Phenomenon

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

Black holes have presented us with some of the most baffling paradoxes in physics. From their original conception as dark stars, they have come to be understood as physical systems with their own thermodynamic behaviour. This same behaviour leads to paradoxical conflicts between some of the basic principles of physics whose resolution is not straightforward and that suggest a new structure—known as a firewall—may be present. This chapter provides an overview of the firewall problem, as it emerges from our understanding of black hole thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michell, J.: On the means of discovering the distance, magnitude, etc. of the fixed stars \(\ldots \) . Phil. Trans. R. Soc. London 74, 35 (1783)

    Google Scholar 

  2. Bradley, J.: Account of a new discoved motion of the Fix’d Stars. Phil. Trans. R. Soc. London 35, 637 (1783).

    Google Scholar 

  3. A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black Holes: Complementarity or firewalls? JHEP 1302, 062 (2013). arXiv:1207.3123

  4. Mathur, S.D.: The information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). arXiv:0909.1038

  5. Oppenheimer, J., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  6. Mann, R.B.: Topological black holes: outside looking. In: Burko, L., Ori, A. (eds.) Internal structure of black holes and spacetime singularities, pp. 311–342. Technion Press (1998). gr-qc/9709039

  7. Fidkowski, L., Hubeny, V., Kleban, M., Shenker, S.: The black hole singularity in AdS/CFT. JHEP 0402, 014 (2004). hep-th/0306170

  8. Bardeen, J.M., Carter, B., Hawking, S.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26, 195011 (2009). arXiv:0904.2765

  10. Caldarelli, M.M., Cognola, G., Klemm, D.: Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class. Quant. Grav. 17, 399–420 (2000). hep-th/9908022

  11. Dolan, B., Kastor, D., Kubiznak, D., Mann, R., Traschen, J.: Thermodynamic volumes and isoperimetric inequalities for de sitter black holes. Phys. Rev. D. (2013). arXiv:1301.5926

  12. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume. Galaxies 2, 89–159 (2014). arXiv:1401.2586

  13. Gibbons, G., Perry, M., Pope, C.: The first law of thermodynamics for Kerr-anti-de Sitter black holes. Class. Quant. Grav. 22, 1503–1526 (2005). hep-th/0408217

  14. Creighton, J., Mann, R.B.: Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D52, 4569–4587 (1995). gr-qc/9505007

  15. Dolan, B.: The cosmological constant and the black hole equation of state. Class. Quant. Grav. 28, 125020 (2011). arXiv:1008.5023

  16. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012). arXiv:1205.0559

  17. Gunasekaran, S., Kubiznak, D., Mann, R.: Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization. JHEP 1211, 110 (2012). arXiv:1208.6251

  18. Hawking, S., Page, D.N.: Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Kerr-AdS analogue of triple point and solid/liquid/gas phase transition. Class. Quant. Grav. 31, 042001 (2014). arXiv:1308.2672

  20. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  21. Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D7, 2850–2862 (1973)

    ADS  Google Scholar 

  22. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  23. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ross, S.F.: Black hole thermodynamics. hep-th/0502195

  25. Starobinsky, A.A.: Amplification of waves during reflection from a rotating black hole. Sov. Phys. JETP 37, 28–32 (1973)

    Google Scholar 

  26. Unruh, W.: Second quantization in the Kerr metric. Phys. Rev. D10, 3194–3205 (1974)

    ADS  Google Scholar 

  27. Chandrasekhar, S.: The mathematical theory of black holes (1983)

    Google Scholar 

  28. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993). gr-qc/9305007

  29. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8, 12 (2005). gr-qc/0505065

  30. Unruh, W.: Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981)

    Article  ADS  Google Scholar 

  31. Unruh, W.: Sonic analog of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D51, 2827–2838 (1995)

    ADS  Google Scholar 

  32. Brout, R., Massar, S., Parentani, R., Spindel, P.: Hawking radiation without transPlanckian frequencies. Phys. Rev. D52, 4559–4568 (1995). hep-th/9506121

  33. Corley, S., Jacobson, T.: Hawking spectrum and high frequency dispersion. Phys. Rev. D54, 1568–1586 (1996). hep-th/9601073

  34. Barrabes, C., Frolov, V.P., Parentani, R.: Metric fluctuation corrections to Hawking radiation. Phys. Rev. D59, 124010 (1999). gr-qc/9812076

  35. Parentani, R.: Quantum metric fluctuations and Hawking radiation. Phys. Rev. D63, 041503 (2001). gr-qc/0009011

  36. Barrabes, C., Frolov, V.P., Parentani, R.: Stochastically fluctuating black hole geometry, Hawking radiation and the transPlanckian problem. Phys. Rev. D62, 044020 (2000). gr-qc/0001102

  37. Unruh, W.G., Schutzhold, R.: On the universality of the Hawking effect. Phys. Rev. D71, 024028 (2005). gr-qc/0408009

  38. Liberati, S., Sindoni, L., Sonego, S.: Linking the trans-Planckian and the information loss problems in black hole physics. Gen. Rel. Grav. 42, 1139–1152 (2010). arXiv:0904.0815

  39. Weinfurtner , S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011). arXiv:1008.1911/gr-qc

  40. Schtzhold, R., Unruh, W.: Hawking radiation with dispersion versus breakdown of the WKB approximation. Phys. Rev. D88(12), 124009 (2013). arXiv:1308.2159

  41. Zurek, W.: Entropy evaporated by a black hole. Phys. Rev. Lett. 49, 1683–1686 (1982)

    Article  ADS  Google Scholar 

  42. Susskind, L., Thorlacius, L., Uglum, J.: The Stretched horizon and black hole complementarity. Phys. Rev. D48, 3743–3761 (1993). hep-th/9306069

  43. Stephens, C.R., ’t Hooft, G., Whiting, B.F.: Black hole evaporation without information loss. Class. Quant. Grav. 11, 621–648 (1994). gr-qc/9310006

  44. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200

  45. Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B256, 727 (1985)

    Google Scholar 

  46. Mann, R.B., Tarasov, L., Zelnikov, A.: Brick walls for black holes. Class. Quant. Grav. 9, 1487–1494 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. Mathur, S.D., Turton, D.: The flaw in the firewall argument. Nucl. Phys. (2014). arXiv:1306.5488

  48. Mathur, S.D.: Black holes and beyond. Ann. Phys. 327, 2760–2793 (2012). arXiv:1205.0776

  49. Braunstein, S.L., Pirandola, S., Zyczkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110(10), 101301 (2013). arXiv:0907.1190

  50. Page, D.N.: Time dependence of Hawking radiation entropy. J. Cosmol. Astropart. Phys. 1309, 028 (2013). arXiv:1301.4995

  51. Bousso, R.: Complementarity is not enough. Phys. Rev. D87(12), 124023 (2013). arXiv:1207.5192

  52. Susskind, L.: The transfer of entanglement: the case for firewalls (2012). arXiv:1210.2098

  53. Giveon, A., Itzhaki, N.: String theory versus black hole complementarity. JHEP 1212, 094 (2012). arXiv:1208.3930

  54. Giveon, A., Itzhaki, N.: String theory at the tip of the cigar. JHEP 1309, 079 (2013). arXiv:1305.4799

  55. Avery, S.G., Chowdhury, B.D.: Firewalls in AdS/CFT (2013). arXiv:1302.5428

  56. Smerlak, M.: The two faces of Hawking radiation. Int. J. Mod. Phys. D22, 1342019 (2013). arXiv:1307.2227

  57. Marolf, D., Polchinski, J.: Gauge/gravity duality and the black hole interior. Phys. Rev. Lett. 111, 171301 (2013). arXiv:1307.4706

  58. Chowdhury, B.D.: Cool horizons lead to information loss. JHEP 1310, 034 (2013). arXiv:1307.5915

  59. Bousso, R.: Firewalls from double purity. Phys. Rev. D88, 084035 (2013). arXiv:1308.2665

  60. Kim, W., Son, E.J.: Freely falling observer and black hole radiation. Mod. Phys. Lett. A29, 1450052 (2014). arXiv:1310.1458

  61. Berenstein, D., Dzienkowski, E.: Numerical evidence for firewalls (2013). arXiv:1311.1168

  62. Park, I.: Indication for unsmooth horizon induced by quantum gravity interaction (2014). arXiv:1401.1492

  63. Silverstein, E.: Backdraft: string creation in an old Schwarzschild black hole (2014). arXiv:1402.1486

  64. Gary, M.: Still no Rindler firewalls (2013). arXiv:1307.4972

  65. Susskind, L.: Singularities, firewalls, and complementarity (2012). arXiv:1208.3445

  66. Almheiri, A., Marolf, D., Polchinski, J., Stanford, D., Sully, J.: An apologia for firewalls. JHEP 1309, 018 (2013). arXiv:1304.6483

  67. Nomura, Y., Varela, J., Weinberg, S.J.: Complementarity endures: no firewall for an infalling observer. JHEP 1303, 059 (2013). arXiv:1207.6626

  68. Nomura, Y., Varela, J., Weinberg, S.J.: Black holes, information, and Hilbert space for quantum gravity. Phys. Rev. D87(8), 084050 (2013). arXiv:1210.6348

  69. Nomura, Y., Varela, J.: A note on (no) firewalls: the entropy argument. JHEP 1307, 124 (2013). arXiv:1211.7033

  70. Nomura, Y., Varela, J., Weinberg, S.J.: Low energy description of quantum gravity and complementarity (2014). arXiv:1304.0448

  71. Nomura, Y., Varela, J., Weinberg, S.J.: Black holes or firewalls: a theory of horizons. Phys. Rev. D88, 084052 (2013). arXiv:1308.4121

  72. Nomura, Y., Weinberg, S.J.: The entropy of a vacuum: what does the covariant entropy count? (2013). arXiv:1310.7564

  73. Harlow, D., Hayden, P.: Quantum computation vs. firewalls. JHEP 1306, 085 (2013). arXiv:1301.4504

  74. Susskind, L.: Black hole complementarity and the Harlow-Hayden conjecture (2013). arXiv:1301.4505

  75. Lowe, D.A., Thorlacius, L.: Pure states and black hole complementarity. Phys. Rev. D88, 044012 (2013). arXiv:1305.7459

  76. Banks, T., Fischler, W.: Holographic space-time does not predict firewalls (2012). arXiv:1208.4757

  77. Papadodimas, K., Raju, S.: An infalling observer in AdS/CFT. JHEP 1310, 212 (2013). arXiv:1211.6767

  78. Neiman, Y.: On-shell actions with lightlike boundary data (2012). arXiv:1212.2922

  79. Banks, T., Fischler, W.: No firewalls in holographic space-time or matrix theory (2013). arXiv:1305.3923

  80. Iizuka, N., Terashima, S.: Brick walls for black holes in AdS/CFT (2013). arXiv:1307.5933

  81. Germani, C.: On the many saddle points description of quantum black holes. Phys. Lett. B733, 93–99 (2014). arXiv:1307.6238

  82. Papadodimas, K., Raju, S.: The black hole interior in AdS/CFT and the information paradox. Phys. Rev. Lett. 112, 051301 (2014). arXiv:1310.6334

  83. Papadodimas, K., Raju, S.: State-dependent bulk-boundary maps and black hole complementarity. Phys. Rev. D89, 086010 (2014). arXiv:1310.6335

  84. Verlinde, E., Verlinde, H.: Behind the horizon in AdS/CFT (2013). arXiv:1311.1137

  85. Banks, T., Fischler, W., Kundu, S., Pedraza, J.F.: Holographic space-time and black holes: mirages as alternate reality (2014). arXiv:1401.3341

  86. Sasaki, M., Yeom, D.-H.: Thin-shell bubbles and information loss problem in anti de Sitter background (2014). arXiv:1404.1565

  87. Giddings, S.B.: Models for unitary black hole disintegration. Phys. Rev. D85, 044038 (2012). arXiv:1108.2015

  88. Giddings, S.B.: Black holes, quantum information, and unitary evolution. Phys. Rev. D85, 124063 (2012). arXiv:1201.1037

  89. Giddings, S.B.: Nonviolent nonlocality. Phys. Rev. D88, 064023 (2013). arXiv:1211.7070

  90. Giddings, S.B.: Nonviolent information transfer from black holes: a field theory parametrization. Phys. Rev. D88(2), 024018 (2013). arXiv:1302.2613

  91. Giddings, S.B.: Statistical physics of black holes as quantum-mechanical systems. Phys. Rev. D88, 104013 (2013). arXiv:1308.3488

  92. Giddings, S.B., Shi, Y.: Effective field theory models for nonviolent information transfer from black holes (2013). arXiv:1310.5700

  93. Giddings, S.B.: Modulated Hawking radiation and a nonviolent channel for information release (2014). arXiv:1404.7052

  94. Berenstein, D.: Sketches of emergent geometry in the gauge/gravity duality (2014). arXiv:1401.5804

  95. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781–811 (2013). arXiv:1306.0533

  96. Susskind, L.: New concepts for old black holes (2013). arXiv:1311.3335

  97. Susskind, L.: Butterflies on the stretched horizon (2013). arXiv:1311.7379

  98. Susskind, L.: Computational complexity and black hole horizons (2014). arXiv:1402.5674

  99. Susskind, L.: Addendum to computational complexity and black hole horizons (2014). arXiv:1403.5695

  100. Hawking, S.: Information preservation and weather forecasting for black holes (2014). arXiv:1401.5761

  101. Hewitt, M.: Thermal duality and gravitational collapse in heterotic string theories (2013). arXiv:1309.7578

  102. Moffat, J.: Stochastic quantum gravity, gravitational collapse and grey holes (2014). arXiv:1402.0906

  103. Mathur, S.D.: The fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005). hep-th/0502050

  104. Cvetic, M., Youm, D.: General rotating five-dimensional black holes of toroidally compactified heterotic string. Nucl. Phys. B476, 118–132 (1996). hep-th/9603100

  105. Balasubramanian, V., de Boer, J., Keski-Vakkuri, E., Ross, S.F.: Supersymmetric conical defects: towards a string theoretic description of black hole formation. Phys. Rev. D64, 064011 (2001). hep-th/0011217

  106. Maldacena, J.M., Maoz, L.: Desingularization by rotation. JHEP 0212, 055 (2002). hep-th/0012025

  107. Lunin, O., Mathur, S.D.: Metric of the multiply wound rotating string. Nucl. Phys. B610, 49–76 (2001). hep-th/0105136

  108. Lunin, O., Mathur, S.D.: AdS/CFT duality and the black hole information paradox. Nucl. Phys. B623, 342–394 (2002). hep-th/0109154

  109. Lunin, O., Maldacena, J.M., Maoz, L.: Gravity solutions for the D1–D5 system with angular momentum (2002). hep-th/0212210

  110. Kanitscheider, I., Skenderis, K., Taylor, M.: Fuzzballs with internal excitations. J. High Energy Phys. 0706, 056 (2007). arXiv:0704.0690

  111. Mathur, S.D., Saxena, A., Srivastava, Y.K.: Constructing ‘hair’ for the three charge hole. Nucl. Phys. B680, 415–449 (2004). hep-th/0311092

  112. Giusto, S., Mathur, S.D., Saxena, A.: Dual geometries for a set of 3-charge microstates. Nucl. Phys. B701, 357–379 (2004). hep-th/0405017

  113. Giusto, S., Mathur, S.D., Saxena, A.: 3-charge geometries and their CFT duals. Nucl. Phys. B710, 425–463 (2005). hep-th/0406103

  114. Lunin, O.: Adding momentum to D-1 - D-5 system. JHEP 0404, 054 (2004). hep-th/0404006

  115. Giusto, S., Mathur, S.D.: Geometry of D1-D5-P bound states. Nucl. Phys. B729, 203–220 (2005). hep-th/0409067

  116. Bena, I., Warner, N.P.: Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1–92 (2008). hep-th/0701216

  117. Balasubramanian, V., Gimon, E.G., Levi, T.S.: Four dimensional black hole microstates: from D-branes to spacetime foam. JHEP 0801, 056 (2008). hep-th/0606118

  118. Giusto, S., Mathur, S.D.: Fuzzball geometries and higher derivative corrections for extremal holes. Nucl. Phys. B738, 48–75 (2006). hep-th/0412133

  119. Mathur, S.D.: Black hole size and phase space volumes (2007). arXiv:0706.3884

  120. Page, D.N.: Hyper-entropic gravitational fireballs (grireballs) with firewalls. J. Cosmol. Astropart. Phys. 1304, 037 (2013). arXiv:1211.6734

  121. Braunstein, S.L., Pirandola, S.: Evaporating black holes have leaky horizons or exotic atmospheres (2013). arXiv:1311.1326

  122. Saravani, M., Afshordi, N., Mann, R.B.: Empty black holes, firewalls, and the origin of Bekenstein-Hawking entropy (2012). arXiv:1212.4176

  123. Saravani, M., Afshordi, N., Mann, R.B.: Dynamical emergence of universal horizons during the formation of black holes. Phys. Rev. D89, 084029 (2014). arXiv:1310.4143

  124. Almheiri, A., Sully, J.: An uneventful horizon in two dimensions. JHEP 1402, 108 (2014). arXiv:1307.8149

  125. Gambini, R., Pullin, J.: Loop quantization of the Schwarzschild black hole. Phys. Rev. Lett. 110(21), 211301 (2013). arXiv:1302.5265

  126. Golovnev, A.: Smooth horizons and quantum ripples (2014). arXiv:1401.2810

  127. Freivogel, B.: Energy and information near black hole horizons (2014). arXiv:1401.5340

  128. Verlinde, E., Verlinde, H.: Passing through the firewall (2013). arXiv:1306.0515

  129. Verlinde, E., Verlinde, H.: Black hole information as topological qubits (2013). arXiv:1306.0516

  130. Hossenfelder, S.: Comment on the black hole firewall (2012). arXiv:1210.5317

  131. Hossenfelder, S.: Disentangling the black hole vacuum (2014). arXiv:1401.0288

  132. Jacobson, T.: Boundary unitarity and the black hole information paradox. Int. J. Mod. Phys. D22, 1342002 (2013). arXiv:1212.6944

  133. Brustein, R.: Origin of the blackhole information paradox. Fortsch. Phys. 62, 255–265 (2014). arXiv:1209.2686

  134. Brustein, R., Medved, A.: Semiclassical black holes expose forbidden charges and censor divergent densities. J. High Energy Phys. 1309, 108 (2013). arXiv:1302.6086

  135. Brustein, R., Medved, A.: Firewalls, smoke and mirrors (2014). arXiv:1401.1401

  136. Varela, J.: Semi-classical field theory as decoherence free subspaces (2014). arXiv:1404.3498

  137. Torrieri, G.: Some considerations on multi-particle correlations, many particle systems, and entropy in effective field theories (2013). arXiv:1306.5719

  138. Ilgin, I., Yang, I.-S.: Causal patch complementarity: the inside story for old black holes. Phys. Rev. D89, 044007 (2014). arXiv:1311.1219

  139. Hui, L., Yang, I.-S.: Complementarity + back-reaction is enough. Phys. Rev. D89, 084011 (2014). arXiv:1308.6268

  140. Hotta, M., Matsumoto, J., Funo, K.: Black hole firewalls require huge energy of measurement (2013). arXiv:1306.5057

  141. Hutchinson, J., Stojkovic, D.: Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole (2013). arXiv:1307.5861

  142. Hsu, S.D.: Macroscopic superpositions and black hole unitarity (2013). arXiv:1302.0451

  143. Hsu, S.D.H.: Factorization of unitarity and black hole firewalls (2013). arXiv:1308.5686

  144. Hollowood, T.J.: Schrodinger’s cat and the firewall (2014). arXiv:1403.5947

  145. Akhoury, R.: Unitary S matrices with long-range correlations and the quantum black hole (2013). arXiv:1311.5613

  146. Horowitz, G.T., Maldacena, J.M.: The black hole final state. JHEP 0402, 008 (2004). hep-th/0310281

  147. Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models (2013). arXiv:1308.4209

  148. Ahn, D., Moon, Y., Mann, R.B., Fuentes-Schuller, I.: The black hole final state for the dirac fields in Schwarzschild spacetime. JHEP 0806, 062 (2008). arXiv:0801.0471

  149. Bousso, R., Stanford, D.: Measurements without probabilities in the final state proposal. Phys. Rev. D89, 044038 (2014). arXiv:1310.7457

  150. Larjo, K., Lowe, D.A., Thorlacius, L.: Black holes without firewalls. Phys. Rev. D87(10), 104018 (2013). arXiv:1211.4620

  151. Lowe, D.A., Thorlacius, L.: Black hole complementarity: the inside view (2014). arXiv:1402.4545

  152. Ori, A.: Firewall or smooth horizon? (2012). arXiv:1208.6480

  153. Abramowicz, M., Kluzniak, W., Lasota, J.P.: Mass of a black hole firewall. Phys. Rev. Lett. 112, 091301 (2014). arXiv:1311.0239

  154. Wielgus, M., Abramowicz, M.A., Ellis, G.F.R., Vincent, F.H.: Cosmic background radiation in the vicinity of a Schwarzschild black hole: no classic firewall (2014). arXiv:1406.6551

Download references

Acknowledgments

I am grateful for discussions with Niayesh Afshordi, Mirjam Cvetic, Brian Dolan, David Kastor, David Kubiznak, Samir Mathur, Jonas Mureika, Don Page, Mehdi Saravani, Jennie Traschen, and Rafael Sorkin on various aspects of this work, which was supported in part by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mann, R.B. (2015). The Firewall Phenomenon. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_3

Download citation

Publish with us

Policies and ethics