Skip to main content

Empirical Performance of the Approximation of the Least Hypervolume Contributor

  • Conference paper
Book cover Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

A fast computation of the hypervolume has become a crucial component for the quality assessment and the performance of modern multi-objective evolutionary optimization algorithms. Albeit recent improvements, exact computation becomes quickly infeasible if the optimization problems scale in their number of objectives or size. To overcome this issue, we investigate the potential of using approximation instead of exact computation by benchmarking the state of the art hypervolume algorithms for different geometries, dimensionality and number of points. Our experiments outline the threshold at which exact computation starts to become infeasible, but approximation still applies, highlighting the major factors that influence its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63. Shaker Ithaca (1999)

    Google Scholar 

  3. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  4. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm (2001)

    Google Scholar 

  8. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  10. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

    Article  Google Scholar 

  11. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  12. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: Np-hard in general, but fast in practice. Theoretical Computer Science 425, 104–116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bringmann, K., Friedrich, T.: Parameterized average-case complexity of the hypervolume indicator. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 575–582. ACM, New York (2013)

    Chapter  Google Scholar 

  14. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  15. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)

    Google Scholar 

  16. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Bringmann, K.: An improved algorithm for Klee’s measure problem on fat boxes. Computational Geometry 45(5), 225–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yildiz, H., Suri, S.: On Klee’s measure problem for grounded boxes. In: Proceedings of the 2012 Symposuim on Computational Geometry, pp. 111–120. ACM (2012)

    Google Scholar 

  19. Beume, N.: S-metric calculation by considering dominated hypervolume as Klee’s measure problem. Evolutionary Computation 17(4), 477–492 (2009)

    Article  Google Scholar 

  20. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1157–1163. IEEE (2006)

    Google Scholar 

  21. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)

    Article  Google Scholar 

  22. Priester, C., Narukawa, K., Rodemann, T.: A comparison of different algorithms for the calculation of dominated hypervolumes. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 655–662. ACM, New York (2013)

    Chapter  Google Scholar 

  23. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. Computational Geometry 43(6), 601–610 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ishibuchi, H., Tsukamoto, N., Sakane, Y., Nojima, Y.: Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 527–534. ACM (2010)

    Google Scholar 

  25. Bringmann, K., Friedrich, T., Igel, C., Voß, T.: Speeding up many-objective optimization by Monte Carlo approximations. Artificial Intelligence 204, 22–29 (2013)

    Article  MathSciNet  Google Scholar 

  26. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 10(1), 50–66 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nowak, K., Märtens, M., Izzo, D. (2014). Empirical Performance of the Approximation of the Least Hypervolume Contributor. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_65

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics