Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

In many physical problems, knowledge is limited in quality and quantity by variability, bias in the measurements and limitations in the measurements: these are all sources of uncertainties. When we attempt to solve the problem numerically, we must account for those limitations, and in addition, we must identify possible shortcomings in the numerical techniques employed. Incomplete understanding of the physical processes involved will add to the sources of possible uncertainty in the models employed. In a general sense, we distinguish between errors and uncertainty simply by saying that errors are recognizable deficiencies not due to lack of knowledge, whereas uncertainties are potential and directly related to lack of knowledge [1]. This definition clearly identifies errors as deterministic quantities and uncertainties as stochastic in nature; uncertainty estimation and quantification are, therefore, typically treated within a probabilistic framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. AIAA (American Institute of Aeronautics and Astronautics) Staff (1998) AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics & Astronautics, Reston, VA

    Google Scholar 

  2. Beran PS, Pettit CL, Millman DR (2006) Uncertainty quantification of limit-cycle oscillations. J Comput Phys 217(1):217–247. doi:http://dx.doi.org/10.1016/j.jcp.2006.03.038

  3. Carpenter MH, Nordström J, Gottlieb D (1999) A stable and conservative interface treatment of arbitrary spatial accuracy. J Comput Phys 148(2):341–365. doi:http://dx.doi.org/10.1006/jcph.1998.6114

  4. Chauvière C, Hesthaven JS, Lurati L (2006) Computational modeling of uncertainty in time-domain electromagnetics. SIAM J Sci Comput 28(2):751–775. doi:http://dx.doi.org/10.1137/040621673

  5. Christie M, Demyanov V, Erbas D (2006) Uncertainty quantification for porous media flows. J Comput Phys 217(1):143–158. doi:http://dx.doi.org/10.1016/j.jcp.2006.01.026

  6. Ghanem RG, Dham S (1998) Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Porous Media 32:239–262

    Article  MathSciNet  Google Scholar 

  7. Ghanem RG, Doostan A (2006) On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J Comput Phys 217(1):63–81. doi:http://dx.doi.org/10.1016/j.jcp.2006.01.037

  8. Gustafsson B, Kreiss HO, Oliger J (1995) Time dependent problems and difference methods, 1st edn. Wiley, New York

    MATH  Google Scholar 

  9. Kreiss HO, Lorenz J (1989) Initial boundary value problems and the Navier–Stokes equations. Academic, New York

    MATH  Google Scholar 

  10. Kreiss HO, Wu L (1993) On the stability definition of difference approximations for the initial boundary value problem. Appl Numer Math 12:213–227

    Article  MATH  MathSciNet  Google Scholar 

  11. Lundquist T, Nordström J (2014) The sbp-sat technique for initial value problems. J Comput Phys 270:86–104

    Article  MathSciNet  Google Scholar 

  12. Nordström J (1995) The use of characteristic boundary conditions for the Navier-Stokes equations. Comput Fluids 24(5):609–623

    Article  MATH  MathSciNet  Google Scholar 

  13. Nordström J (2006) Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J Sci Comput 29(3):375–404. doi:http://dx.doi.org/10.1007/s10915-005-9013-4

  14. Nordström J (2007) Error bounded schemes for time-dependent hyperbolic problems. SIAM J Sci Comp 30(1):46–59. doi:10.1137/060654943

    Article  MATH  Google Scholar 

  15. Nordström J, Eriksson S, Eliasson P (2012) Weak and strong wall boundary procedures and convergence to steady-state of the Navier-Stokes equations. J Comput Phys 231(14):4867–4884

    Article  MATH  MathSciNet  Google Scholar 

  16. Nordström J, Lundquist T (2013) Summation-by-parts in time. J Comput Phys 251:487–499

    Article  MathSciNet  Google Scholar 

  17. Nordström J, Svärd M (2005) Well-posed boundary conditions for the Navier-Stokes equations. SIAM J Numer Anal 43(3):1231–1255

    Article  MATH  MathSciNet  Google Scholar 

  18. Poroseva S, Letschert J, Hussaini MY (2005) Uncertainty quantification in hurricane path forecasts using evidence theory. In: APS meeting abstracts, pp B1+, Chicago, IL

    Google Scholar 

  19. Reagan MT, Najm HN, Ghanem RG, Knio OM (2003) Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust Flame 132(3):545–555

    Article  Google Scholar 

  20. Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160. doi:10.1146/annurev.fluid.29.1.123

    Article  MathSciNet  Google Scholar 

  21. Strikwerda JC (1977) Initial boundary value problems for incompletely parabolic systems. Commun Pure Appl Math 9(3):797–822

    Article  MathSciNet  Google Scholar 

  22. Svärd M, Nordström J (2006) On the order of accuracy for difference approximations of initial-boundary value problems. J Comput Phys 218(1):333–352. doi:http://dx.doi.org/10.1016/j.jcp.2006.02.014

  23. Svärd M, Nordström J (2014) Review of summation-by-parts schemes for initial-boundary-value problems. J Comput Phys 268:17–38

    Article  MathSciNet  Google Scholar 

  24. Wan X, Karniadakis GE (2006) Long-term behavior of polynomial chaos in stochastic flow simulations. Comput Methods Appl Math Eng 195:5582–5596

    Article  MATH  MathSciNet  Google Scholar 

  25. Witteveen JAS, Sarkar S, Bijl H (2007) Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos. Comput Struct 85(11–14):866–878. doi:http://dx.doi.org/10.1016/j.compstruc.2007.01.004

  26. Yu Y, Zhao M, Lee T, Pestieau N, Bo W, Glimm J, Grove JW (2006) Uncertainty quantification for chaotic computational fluid dynamics. J Comput Phys 217(1):200–216. doi:http://dx.doi.org/10.1016/j.jcp.2006.03.030

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettersson, M.P., Iaccarino, G., Nordström, J. (2015). Introduction. In: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10714-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10714-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10713-4

  • Online ISBN: 978-3-319-10714-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics