Skip to main content

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors

  • Conference paper
  • First Online:
Sustainable Energy in the Built Environment - Steps Towards nZEB

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The best results obtained by the group active in the R&D Centre Renewable Energy Systems and Recycling are also reported and they are related to the steps followed in developing and optimizing the absorber plate (substrate, the alumina matrix, the colored coatings and the anti-reflexion layer) and the glazing (as anti-reflexive coating and/or as colored component). These results represent a promising input for novel, market-acceptable flat plate solar-thermal collectors, with increased architectural acceptance, for facades integration in Nearly Zero Energy Buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barshilia, H. C., Kumar, P., Rajam, K. S., & Biswas, A. (2011). Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Solar Energy Materials and Solar Cells, 95, 1707–1715.

    Google Scholar 

  2. Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30, 231–295.

    Google Scholar 

  3. Céspedes, E., Wirz, M., Sánchez-García, J. A., Alvarez-Fraga, L., Escobar-Galindo, R., & Prieto, C. (2014). Novel Mo–Si3N4 based selective coating for high temperature concentrating solar power applications. Solar Energy Materials and Solar Cells, 122, 217–225.

    Google Scholar 

  4. Zhu, D., & Zhao, S. (2010). Chromaticity and optical properties of colored and black solar–thermal absorbing coatings. Solar Energy Materials and Solar Cells, 94, 1630–1635.

    Google Scholar 

  5. Duta, A., Isac, L., Milea, A., Ienei, E., & Perniu, D. (2014). Coloured solar-thermal absorbers—a comparative analysis of cermet structures. Energy Procedia, 48, 543–553.

    Google Scholar 

  6. Boström, T. K., Wäckelgård, E., & Westin, G. (2005). Durability tests of solution-chemically derived spectrally selective absorbers. Solar Energy Materials and Solar Cells, 89, 197–207.

    Google Scholar 

  7. Wijewardane, S., & Goswami, D. Y. (2012). A review on surface control of thermal radiation by paints and coating for new energy applications. Renewable and Sustainable Energy Reviews, 16, 1863–1873.

    Google Scholar 

  8. Oelhafen, P., & Schüler, A. (2005). Nanostructured materials for solar energy conversion. Solar Energy, 79, 110–121.

    Google Scholar 

  9. Selvakumar, N., & Barshilia, H.C. (2012). Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 98, 1–23.

    Google Scholar 

  10. Wu, L., Gao, J., Liu, Z., Liang, L., Xia, F., & Cao, H. (2013). Thermal aging characteristics of CrNixOy solar selective absorber coating for flat plate solar thermal collector applications. Solar Energy Materials and Solar Cells, 114, 186–191.

    Google Scholar 

  11. Li, Z., Zhao, J., & Ren, L. (2012). Aqueous solution-chemical derived Ni–Al2O3 solar selective absorbing coatings. Solar Energy Materials and Solar Cells, 105, 90–95.

    Google Scholar 

  12. Selvakumar, N., Santhoshkumar, S., Basu, S., Biswas, A., & Barshilia, H. C. (2013). Spectrally selective CrMoN/CrON tandem absorber for mid-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 109, 97–103.

    Google Scholar 

  13. Granqvist, C. G. (2003). Solar energy materials. Advanced Materials, 15, 1789–1803.

    Google Scholar 

  14. Ding, D., Cai, W., Long, M., Wu, H., & Wu, Y. (2010). Optical, structural and thermal characteristics of Cu–CuAl2O4 hybrids deposited in anodic aluminum oxide as selective solar absorber. Solar Energy Materials and Solar Cells, 94(10), 1578–1581.

    Google Scholar 

  15. Orel, B., Spreizer, H., Slemenik Perše, L., Fir, M., Sûrca Vuk, A., & Merlini, D. (2007). Silicone-based thickness insensitive spectrally selective (TISS) paints as selective paint coatings for coloured solar absorbers (part I). Solar Energy Materials and Solar Cells, 91, 93–107.

    Google Scholar 

  16. Orel, B., Spreizer, H., Sûrca Vuk, A., Fir, M., Merlini, D., & Vodlan, M. (2007). Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (part II). Solar Energy Materials and Solar Cells, 91, 108–119.

    Google Scholar 

  17. Kunič, R., Kozelj, M., Orel, B., Sûrca Vuk, A., Vilčnik, A., & Slemenik Perše, L. (2009). Adhesion and thermal stability of thickness insensitive spectrally selective (TISS) polyurethane-based paint coatings on copper substrates. Solar Energy Materials and Solar Cells, 93, 630–640.

    Google Scholar 

  18. Purghel, E., Voinea, M., Isac, L., & Duta, A. (2008). Optical properties of Ni/NiOx as infiltration agent in cermet solar Ir absorber. Revista de Chimie, 59, 469–471.

    Google Scholar 

  19. Dudita, M., Isac, L., & Duta, A. (2012). Influence of solvents on properties of solar selective coatings obtained by spray pyrolysis. Bulletin of Materials Science, 35, 997–1002.

    Google Scholar 

  20. Wazwaz, A., & Al-Salaymeh, A. (2013). Photothermal testing before and after degradation of nickel-pigmented aluminium oxide selective absorber prepared by alternate and reverse periodic plating technique. Energy Conversion and Management, 65, 770–776.

    Google Scholar 

  21. Xue, Y., Wang, C., Wang, W., Liu, Y., Wu, Y., & Ning, Y. (2013). Spectral properties and thermal stability of solar selective absorbing AlNi–Al2O3 cermet coating. Solar Energy, 96, 113–118.

    Google Scholar 

  22. Cheng, J., Wang, C., Wang, W., Du, X., Liu, Y., & Xue, Y. (2013). Improvement of thermal stability in the solar selective absorbing Mo-Al2O3 coating. Solar Energy Materials and Solar Cells, 109, 204–208.

    Google Scholar 

  23. Boström, T. K., Westin, G., & Wäckelgård, E. (2007). Optimization of a solution-chemically derived solar absorbing spectrally selective surface. Solar Energy Materials and Solar Cells, 91, 38–43.

    Google Scholar 

  24. Zhao, S., & Wäckelgård, E. (2006). Optimization of solar absorbing three-layer coatings. Solar Energy Materials and Solar Cells, 90, 243–261.

    Google Scholar 

  25. Gaouyat, L., He, Z., Colomer, J. F., Lambin, Ph., Mirabella, F., & Schryvers, D. (2014). Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets. Solar Energy Materials and Solar Cells, 122, 303–308.

    Google Scholar 

  26. Kumar, S. K., Suresh, S., Murugesan, S., & Raj, S. P. (2013). CuO thin films made by nanofibers for solar selective absorber applications. Solar Energy, 94, 299–304.

    Google Scholar 

  27. Voinea, M., Ienei, E., Bogatu, C., & Duta, A. (2009). Solar selective coatings based on nickel oxide obtained via spray pyrolysis. Journal of Nanoscience and Nanotechnology, 9, 4279–4284.

    Google Scholar 

  28. Barshilia, H. C., Selvakumar, N., Rajam, K. S., & Biswas, A. (2008). Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high temperature solar applications. Solar Energy Materials and Solar Cells, 92, 495–504.

    Google Scholar 

  29. Kumar, S. K., Murugesan, S., & Suresh, S. (2014). Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers. Materials Chemistry and Physics, 143, 1209–1214.

    Google Scholar 

  30. Katumba, G., Olumekor, L., Forbes, A., Makiwa, G., Mwakikunga, B., & Lu, J. (2008). Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Solar Energy Materials and Solar Cells, 92, 1285–1292.

    Google Scholar 

  31. Joly, M., Antonetti, Y., Python, M., Gonzalez, M., Gascou, M., Scartezzini, J-L. (2013). Novel black selective coating for tubular solar absorbers based on a sol–gel method. Solar Energy, 94, 233–239.

    Google Scholar 

  32. Selvakumar, N., Manikandanath, N. T., Biswas, A., & Barshilia, H. C. (2012). Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications. Solar Energy Materials and Solar Cells, 102, 86–92.

    Google Scholar 

  33. Tripanagnostopoulos, Y., Souliotis, M., & Nousia, Th. (2000). Solar collectors with colored absorbers. Solar Energy, 68, 343–356.

    Google Scholar 

  34. Sun, X-Y., Sun, X-D., Li, X-G., Wang, Z-Q., He, J., & Wang, B-S. (2014) Performance and building integration of all-ceramic solar collectors. Energy and Buildings, 75, 176–180.

    Google Scholar 

  35. Kalogirou, S., Tripanagnostopoulos, Y., & Souliotis, M. (2005). Performance of solar systems employing collectors with colored absorber. Energy and Buildings, 37, 824–835.

    Google Scholar 

  36. Baneshi, M., Maruyama, S., & Komiya, A. (2011). Comparison between aesthetic and thermal performances of copper oxide and titanium dioxide nano-particulate coatings. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1197–1204.

    Google Scholar 

  37. Crnjak Orel, Z., Klanjšek Gunde, M., & Hutchins, M. G. (2005) Spectrally selective solar absorbers in different non-black colours. Solar Energy Materials and Solar Cells, 85, 41–50.

    Google Scholar 

  38. Japelj, B., Sûrca Vuk, A.,Vilčnik, A., Orel, B., Slemenik Perše, L., & Jerman, I. (2008). Preparation of a TiMEMO nanocomposite by the sol–gel method and its application in coloured thickness insensitive spectrally selective (TISS) coatings. Solar Energy Materials and Solar Cells, 92, 1149–1161.

    Google Scholar 

  39. Wu, Y., Zheng, W., Lin, L., Qu, Y., & Lai, F. (2013). Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure. Solar Energy Materials and Solar Cells, 115, 145–150.

    Google Scholar 

  40. Mihaly, M., Fleancu, M. C., Olteanu, N. L., Bojin, D., Meghea, A., & Enachescu, M. (2012). Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. Comptes Rendus Chimie, 15, 1012–1021.

    Google Scholar 

  41. Mertina, S., Hody-Le Caër, V., Joly, M., Mack, I., Oelhafen, P., & Scartezzini, J. L. (2014). Reactively sputtered coatings on architectural glazing for coloured active solar thermal facades. Energy and Buildings, 68, 764–770.

    Google Scholar 

  42. Cannavale, A., Fiorito, F., Manca, M., Tortorici, G., Cingolani, R., & Gigli, G. (2010). Multifunctional bioinspired sol–gel coatings for architectural glasses. Building and Environment, 45, 1233–1243.

    Google Scholar 

  43. Borge-Diez, D., Colmenar-Santos, A., Pérez-Molina, C., & Castro-Gil, M. (2013). Passive climatization using a cool roof and natural ventilation for internally displaced persons in hot climates: Case study for Haiti. Building and Environment, 59, 116–126.

    Google Scholar 

  44. Arnaud, A. (1997). Industrial production of coated glass: Future trend for expanding needs. Journal of Non-crystalline Solids, 218, 12–18.

    Google Scholar 

  45. Dong, Z. B., Lu, Y. F., Gao, K., Shi, L. Q., Sun, J., & Xu, N. (2008). Thermal stability of carbon nitride thin films prepared by electron cyclotron resonance plasma assisted pulsed laser deposition. Thin Solid Films, 516, 8594–8598.

    Google Scholar 

  46. Zuo, J., Keil, P., & Grundmeier, G. (2012). Synthesis and characterization of photochromic Ag-embedded TiO2 nanocomposite thin films by non-reactive RF-magnetron sputter deposition. Applied Surface Science, 258, 7231–7237.

    Google Scholar 

  47. Jäger, T., Bissig, B., Döbeli, M., Tiwari, A. N., & Romanyu, Y. E. (2014). Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing. Thin Solid Films, 553, 21–25.

    Google Scholar 

  48. Amoruso, S., Nedyalkov, N. N., Wang, X., Ausanio, G., Bruzzese, R., & Atanasov, P. A. (2014). Ultrashort-pulse laser ablation of gold thin film targets: Theory and experiment. Thin Solid Films, 550, 190–198.

    Google Scholar 

  49. Dudita, M., Manceriu, L. M., Anastasescu, M., Nicolescu, M., Gartner, M., & Duta, A. (2014). Coloured TiO2 based glazing obtained by spray pyrolysis for solar thermal applications. Ceramics International, 40, 3903–3911.

    Google Scholar 

Download references

Acknowledgments

We hereby acknowledge the structural founds project PRO-DD (POS-CCE, O.2.2.1., ID 123, SMIS 2637, No 11/2009) for providing the infrastructure used in this work and the project EST IN URBA, PN-II-PT-PCCA-2011-3.2-051, in the frame of the Program: Cooperation in Priority Fields—PNII, developed with the support of ANCS, CNDI-UEFISCDI, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Isac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Isac, L., Enesca, A., Mihoreanu, C., Perniu, D., Duta, A. (2014). Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors. In: Visa, I. (eds) Sustainable Energy in the Built Environment - Steps Towards nZEB. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-09707-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09707-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09706-0

  • Online ISBN: 978-3-319-09707-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics