Skip to main content

Sexual Conflict and Evolutionary Psychology: Towards a Unified Framework

  • Chapter
  • First Online:
The Evolution of Sexuality

Part of the book series: Evolutionary Psychology ((EVOLPSYCH))

Abstract

I review sexual conflict: what it is, why it occurs, how to measure it, and why it matters. My focus is on our current understanding of sexual conflict from the perspective of evolutionary biology, drawing upon studies across diverse species. The aim is also, however, to stimulate discussion at the interface of evolutionary biology and evolutionary psychology. The potential for sexual conflict is pervasive, particularly in outbreeding, nonmonogamous species. It results from divergence between the sexes over how to maximize their fitness. Sexual conflict can occur over a range of different reproductive traits and behaviors, from who to mate with, to how much parental care to give. The intensity of sexual conflict over the level of expression of any reproductive trait value or behavior can be assessed by measuring its costs and benefits, in terms of lifetime fitness, for individuals of each sex. Though as yet an underexplored idea, outcomes of sexual interactions between males and females can be viewed in terms of Hamilton’s famous quartet of social behaviors: mutual benefit (cooperation), selfishness, altruism, and spite. Recent work has focused on the mechanisms used by individuals to assess their social and sexual environment to calibrate their responses to perceived threat levels from sexual competitors. In this respect, there is the potential for much crossover between evolutionary biology and evolutionary psychology to further refine and illuminate common emerging themes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, E. M., & Wolfner, M. F. (2007). Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. Journal of Insect Physiology, 53, 319–331.

    PubMed  PubMed Central  Google Scholar 

  • Alexander, R. D., & Noonan, K. M. (1979). Concealment of ovulation, parental care, and human social evolution. In Chagnon, N. & Trions, W.E. (Eds.), Evolutionary biology and human social behavior: An anthropological perspective (pp. 436–453). North Scituate: Duxbury.

    Google Scholar 

  • Amitin, E.G., & Pitnick, S. (2007). Influence of developmental environment on male- and female-mediated sperm precedence in Drosophila melanogaster. Journal of Evolutionary Biology, 20, 381–392.

    PubMed  Google Scholar 

  • Arnqvist, G. (2004). Sexual conflict and sexual selection: Lost in the chase. Evolution, 58, 1383–1388.

    PubMed  Google Scholar 

  • Arnqvist, G. (2006). Sensory exploitation and sexual conflict. Philosophical Transactions of the Royal Society B, 361, 227–386.

    Google Scholar 

  • Arnqvist, G., & Rowe, L. (1995). Sexual conflict and arms races between the sexes: A morphological adaptation for control of mating in a female insect. Proceedings of the Royal Society B, 261, 123–127.

    Google Scholar 

  • Arnqvist, G., & Rowe, L. (2002a). Antagonistic coevolution between the sexes in a group of insects. Nature, 415, 787–789.

    Google Scholar 

  • Arnqvist, G., & Rowe, L. (2002b). Correlated evolution of male and female morphologies in water striders. Evolution, 56, 936–947.

    Google Scholar 

  • Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton: Princeton University Press.

    Google Scholar 

  • Badcock, C., & Crespi, B. (2008). Battle of the sexes may set the brain. Nature, 454, 1054–1055.

    PubMed  Google Scholar 

  • Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2, 349–368.

    PubMed  Google Scholar 

  • Bell, P. D., & Koufopanou, V. (1986). The cost of reproduction. In Dawkins, R. & Ridley, M. (Eds.), Oxford surveys in evolutionary biology. (Vol. 3, pp. 83–131). Oxford: Oxford University Press.

    Google Scholar 

  • Benshoof, L., & Thornhill, R. (1979). The evolution of monogamy and loss of estrus in humans. Journal of Society and Biological Structures, 2, 95–106.

    Google Scholar 

  • Bleske, A. L., & Buss, D. M. (2001). Opposite sex friendship: Sex differences and similarities in initiation, selection and dissolution. Personality and Social Psychology Bulletin, 27, 1310–1323.

    Google Scholar 

  • Boomsma, J. J. (2007). Kin selection versus sexual selection: Why the ends do not meet. Current Biology, 17, R673–R683.

    PubMed  Google Scholar 

  • Boomsma, J. J. (2013). Beyond promiscuity: Mate-choice commitments in social breeding. Philosophilcal Transactions of the Royal Society B, 368, 20120050.

    Google Scholar 

  • Bourke, A. F. G. (2009). The kin structure of sexual interactions. Biology Letters, 5, 689–692.

    PubMed  PubMed Central  Google Scholar 

  • Bourke, A. F. G., & Franks, N. F. (1995). Social evolution in ants. Princeton: Princeton University Press.

    Google Scholar 

  • Boyd, R., & Richerson, P. J. (2005). The origin and evolution of cultures. Oxford: Oxford University Press.

    Google Scholar 

  • Boyd, R., Richerson, P. J., & Henrich, J. (2011). Rapid cultural adaptation can facilitate the evolution of large-scale cooperation. Behavioural Ecology and Sociobiology, 65, 431–444.

    Google Scholar 

  • Bretman, A., Fricke, C., & Chapman, T. (2009). Plastic responses of male D. melanogaster to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society B, 276, 1705–1711.

    PubMed  PubMed Central  Google Scholar 

  • Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2011). Multiple, redundant cues used by males to detect mating rivals. Current Biology, 21, 617–622.

    PubMed  Google Scholar 

  • Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2012). Individual plastic responses by males to rivals reveal mismatches between behaviour and fitness outcomes. Proceedings of the Royal Society B, 279, 2868–2876.

    PubMed  PubMed Central  Google Scholar 

  • Bretman, A., Westmancoat, J. D., & Chapman, T. (2013a). Male control of mating duration following exposure to rivals in fruitflies. Journal of Insect Physiology, 59, 824–827.

    Google Scholar 

  • Bretman, A., Westmancoat, J. D., Gage, M. J. G., & Chapman, T. (2013b). Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution, 67, 2413–2422.

    Google Scholar 

  • Brommer, J. E., Fricke, C., Edward, D. A., & Chapman, T. (2012). Interactions between genotype and sexual conflict environment influence transgenerational fitness in Drosophila melanogaster. Evolution, 66, 517–531.

    PubMed  Google Scholar 

  • Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypothesis testing in 37 cultures. Behavioral and Brain Sciences, 12, 1–49.

    Google Scholar 

  • Buss, D. M. (2003). The evolution of desire: Strategies of human mating. New York: Basic Books.

    Google Scholar 

  • Buss, D. M., & Duntley, J.D. (2008). Adaptations for exploitation. Group Dynamics: Theory, Research and Practice, 12, 105–126.

    Google Scholar 

  • Buss, D. M., & Duntley, J.D. (2011). The evolution of intimate partner violence. Agression and Violent Behavior, 16, 411–419.

    Google Scholar 

  • Carvahlo, G. B., Kapahi, P., Anderson, D. J, & Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16, 692–696.

    Google Scholar 

  • Chapman, T. (2001). Seminal fluid-mediated fitness traits in Drosophila. Heredity, 87, 511–521.

    PubMed  Google Scholar 

  • Chapman, T. (2006). Evolutionary conflicts of interest between males and females. Current Biology, 16, 744–754.

    Google Scholar 

  • Chapman, T., Liddle, L.F., Kalb, J.M., Wolfner, M.F., Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373, 241–244.

    PubMed  Google Scholar 

  • Chapman, T., Herndon, L. A., Heifetz, Y., Partridge, L., & Wolfner, M. F. (2001). The Acp26Aa seminal fluid protein is a modulator of early egg-hatchability in Drosophila melanogaster. Proceedings of the Royal Society B, 268, 1647–1654.

    PubMed  PubMed Central  Google Scholar 

  • Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003a). Sexual conflict. Trends in Ecology and Evolution, 18, 41–47.

    Google Scholar 

  • Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M. F., Smith, H. K., & Partridge, L. (2003b). The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences USA, 100, 9923–9928.

    Google Scholar 

  • Charlesworth, B. (1980). Evolution in age-structured populations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Charnov, E. L. (1979). Simultaneous hermaphroditism and sexual selection. Proceedings of the National Academy of Sciences USA, 76, 2480–2484.

    Google Scholar 

  • Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., & Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell, 54, 291–298.

    PubMed  Google Scholar 

  • Chippindale, A. K., Gibson, J. R., & Rice, W. R. (2001). Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proceedings of the National Academy of Sciences, USA, 98, 1671–1675.

    Google Scholar 

  • Civetta, A., & Clark, A. (2000). Correlated effects of sperm competition and postmating female mortality. Proceedings of the National Academy of Sciences USA, 97, 13162–13165.

    Google Scholar 

  • Civetta, A., & Singh, R.S. (1999). Broad-sense sexual selection, sex gene pool evolution, and speciation. Genome, 42, 1033–1041.

    PubMed  Google Scholar 

  • Clark, N. L., Gasper, J., Sekino, M., Springer, S. A., Aquadro, C. F., & Swanson, W. J. (2009). Coevolution of interacting fertilization proteins. PLoS Genetics, 5, e1000570.

    PubMed  PubMed Central  Google Scholar 

  • Clutton-Brock, T. H. (2007). Sexual selection in males and females. Science, 318, 1882–1885

    PubMed  Google Scholar 

  • Cognigni, P., Bailey, A. P., & Miguel-Aliaga, I. (2011). Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metabolism, 13, 92–104.

    PubMed  PubMed Central  Google Scholar 

  • Cordts, R., & Partridge, L. (1996). Courtship reduces longevity of male Drosophila melanogaster. Animal Behaviour, 52, 269–278.

    Google Scholar 

  • Davies, N. B. (1992). Dunnock behaviour and social evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dewsbury, D. A. (1982). Ejaculate cost and male choice. American Naturalist, 119, 601–610.

    Google Scholar 

  • Domanitskaya, E. V., Liu, H., Chen, S., & Kubli, E. (2007). The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS Journal, 274, 5659–5668.

    PubMed  Google Scholar 

  • Edward, D. A., & Chapman, T. (2011). Evolutionary significance of male mate choice. Trends in Ecology and Evolution, 12, 647–654.

    Google Scholar 

  • Edward, D. A., Fricke, C., Gerrard, D. T., & Chapman, T. (2011). Quantifying the life history response to increased male exposure in female. Drosophila melanogaster. Evolution, 65,  564–573.

    Google Scholar 

  • Ellegren, H., & Parsch, J. (2007). The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics, 8, 689–698.

    PubMed  Google Scholar 

  • Fedorka, K. M., Winterhalter, W. E., & Ware, B. (2011). Perceived sperm competition intensity influences seminal fluid protein production prior to courtship and mating. Evolution, 65, 584–590.

    PubMed  Google Scholar 

  • Fehr, E., & Gächter, S. (2002). The nature of human altruism. Nature, 415, 137–140.

    PubMed  Google Scholar 

  • Feldman, M. W., Cavalli-Sforza, L. L., & Peck, J. R. (1985). Gene-culture coevolution: Models for the evolution of altruism with cultural transmission. Proceedings of the National Academy of Sciences USA, 82, 5814–5818.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. New York: Dover.

    Google Scholar 

  • Foerster, K., Coulson, T., Sheldon, B. C., Pemberton, J. M., Clutton-Brock, T. H., & Kruuk, L. E. B. (2007). Sexually antagonistic genetic variation for fitnes in red deer. Nature, 447, 1107–1111.

    PubMed  Google Scholar 

  • Fowler, K., Partridge, L. (1989). A cost of mating in female fruitflies. Nature, 338, 760–761.

    Google Scholar 

  • Frank, S. A. (2000). Sperm competition and female avoidance of polyspermy mediated by sperm-egg biochemistry. Evolutionary Ecology Research, 2, 613–625.

    Google Scholar 

  • Frank, S. A. (2003). Repression of competition and the evolution of cooperation. Evolution, 57, 693–705.

    PubMed  Google Scholar 

  • Friberg, U. (2006). Male perception of female mating status: Its effect on copulation duration, sperm defence and female fitness. Animal Behaviour, 72, 1259–1268.

    Google Scholar 

  • Fricke, C., Bretman, A., & Chapman, T. (2008). Adult male nutrition and reproductive success in Drosophila melanogaster A reproductive strategy adopted by one sex that is costly to both. Predicted under conditions under which there is negative relat-edness, where individuals are less genetically similar at a given locus than are partners on av-erageEvolution, 62, 3170–3177.

    PubMed  Google Scholar 

  • Fricke, C., Bretman, A. & Chapman, T. (2009a). Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster. Journal of Evolutionary Biology, 23, 157–165.

    Google Scholar 

  • Fricke, C., Perry, J., Chapman, T., & Rowe, L. (2009b). Conditional economics of sexual conflict. Biology Letters, 5, 671–674.

    Google Scholar 

  • Fricke, C., Wigby, S., Hobbs, R., & Chapman, T. (2009c). The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster. Journal of Evolutionary Biology, 22, 275–286.

    Google Scholar 

  • Fromhage, L., & Schneider, J. M. (2005). Safer sex with feeding females: Sexual conflict in a cannibalistic spider. Behavioural Ecology, 16, 377–382.

    Google Scholar 

  • Giles, H., & Powesland, P. F. (1975). Speech style and social evaluation. Oxford: Academic.

    Google Scholar 

  • Gioti, A., Wigby, S., Wertheim, B., Schuster, E., Martinez, P., Pennington, C.J., et al. (2012). Sex peptide of D. melanogaster males is a global regulator of reproductive processes in females. Proceedings of the Royal Society B, 279, 4423–4432.

    PubMed  PubMed Central  Google Scholar 

  • Goetz, C. D., Easton, J. A., Lewis, D. M. G., & Buss, D. M. (2012). Sexual exploitability: Observable cues and their link to sexual attraction. Evolution and Human Behavior, 33, 417–426.

    Google Scholar 

  • Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68, 495–531.

    PubMed  Google Scholar 

  • Haig, D. (1996). Gestational drive and the green-bearded placenta. Proceedings of the National Academy of Sciences USA, 93, 6547–6551.

    Google Scholar 

  • Haig, D. (1997). Parental antagonism, relatedness asymmetries, and genomic imprinting. Proceedings of the Royal Society B, 264, 1657–1662.

    PubMed  PubMed Central  Google Scholar 

  • Haig, D., & Graham, C. (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell, 64, 1045–1046.

    PubMed  Google Scholar 

  • Haig, D., & Wilczek, A. (2006). Sexual conflict and the alternation of haploid and diploid generations. Philosophical Transactions of the Royal Society B, 361, 227–386.

    Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour I, II. Journal of Theoretical Biology, 7, 1–52.

    PubMed  Google Scholar 

  • Hayashi, T. I., Vose, M., Gavrilets, S. (2007). Genetic differentiation by sexual conflict. Evolution, 61, 516–529.

    PubMed  Google Scholar 

  • Helle, S., Lummaa, V., & Jokela, J. (2002). Sons reduced maternal longevity in preindustrial humans. Science, 296, 1085.

    PubMed  Google Scholar 

  • Henrich, J. (2004). Cultural groups selection, coevolutioary processes and large-scale cooperation. Journal of Economic Behaviour and Organization, 53, 3–35.

    Google Scholar 

  • Hill, K. R., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. Hawthorne: Walter de Gruyter Inc.

    Google Scholar 

  • Hodgson, D. J., & Hosken, D. J. (2006). Sperm competition promotes the exploitation of rival ejaculates. Journal of Theoretical Biology, 243, 230–234.

    PubMed  Google Scholar 

  • Holland, B., & Rice, W. (1998). Chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 52, 1–7.

    Google Scholar 

  • Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences USA, 96, 5083–5088.

    Google Scholar 

  • Hrdy, S. B. (1979). Infanticide among animals—review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1, 13–40.

    Google Scholar 

  • Hurst, L. D., & McVean, G. T. (1997). Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends in Genetics, 13, 436–443.

    PubMed  Google Scholar 

  • Imhof, M., Harr, B., Brem, G., & Schlotterer, C. (1998). Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis. Molecular Ecology, 7, 915–917.

    PubMed  Google Scholar 

  • Isaac, R. E., Li. C., Leedale, A. E., & Shirras, A. D. (2009). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B, 277, 65–70.

    PubMed  PubMed Central  Google Scholar 

  • Johnstone, R. A., & Keller, L. (2000). How males can gain by harming their males: Sexual conflict, seminal toxins and the cost of mating. American Naturalist, 156, 368–377.

    Google Scholar 

  • Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003). Host sanctions and the legume-rhizobium mutualism. Nature, 425, 78–81.

    PubMed  Google Scholar 

  • Krebs, J.R., Davies, N.B. (1987). Sexual conflict and sexual selection. In An Introduction to behavioural ecology (2nd ed, pp. 161–190). Sunderland: Sinhauer Asociates.

    Google Scholar 

  • Kubli, E. (2003). Sex peptides: Seminal peptides of the Drosophila male. Cellular and Molecular Life Sciences, 60, 1689–1704.

    PubMed  Google Scholar 

  • Kuukasjärvi, S., Eriksson, C. J. P., Koskela, E., Mappes, T., Nissinen, K., & Rantala, M. J. (2004). Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex. Behavioural Ecology, 15, 579–584.

    Google Scholar 

  • Lawniczak, M. K. N., Barnes, A. I., Linklater, J. R., Boone, J. M., Wigby, S., & Chapman, T. (2007). Mating and immunity in invertebrates. Trends in Ecology and Evolution, 22, 48–55.

    PubMed  Google Scholar 

  • Lee, Y.-H., Tatsuya, O., & Vacquier, V. D. (1995). Positive selection is a general phenomena in the evolution of abalone sperm lysis. Molecular Biology and Evolution, 12, 231–238.

    PubMed  Google Scholar 

  • Lehmann, L., Feldman, M. W., & Foster, K. R. (2008). Cultural transmission can inhibit the evolution of altruistic helping. American Natualist, 172, 12–24.

    Google Scholar 

  • Lessells, C. M. (2005). Why are males bad for females? Models for the evolution of damaging male mating behaviour. American Naturalist, 165, S46–S63.

    PubMed  Google Scholar 

  • Lew, T. A., Morrow, E. H., & Rice, W. R. (2006). Standing genetic variance for female resistance to harm from males and its relationship to intralocus sexual conflict. Evolution, 60, 97–105.

    PubMed  Google Scholar 

  • Liu, H., & Kubli, E. (2003). Sex peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 100, 9929–9933.

    Google Scholar 

  • Long, T. A. F., & Rice, W. R. (2007). Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proceedings of the Royal Society B, 274, 3105–3112.

    PubMed  PubMed Central  Google Scholar 

  • Martin, O. Y., & Hosken, D. J. (2003). The evolution of reproductive isolation through sexual conflict. Nature, 423, 979–982.

    PubMed  Google Scholar 

  • McGraw, L. A., Fiumera, A. C., Ramakrishnan, M., Madhavarapu, S., Clark, A. G., & Wolfner, M. F. (2007). Larval rearing environment affects several post-copulatory traits in Drosophila melanogaster. Biology Letters, 3, 607–610.

    PubMed  PubMed Central  Google Scholar 

  • Metz, E. C., & Palumbi, S. R. (1996). Positive selection for sequence rearrangements generates extensive sequence polymorphism in the gamete recognition protein bindin. Molecular Biology and Evolution, 13, 391–406.

    Google Scholar 

  • Morrow, E. H., Arnqvist, G., & Pitnick, S. (2003). Adaptation versus pleiotropy: Why do males harm their mates? Behavioural Ecology, 14, 802–806.

    Google Scholar 

  • Mueller, J. L., Ripoll, D. R., Aquadro, C. F., Wolfner, M. F. (2004). Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid Proceedings of the National Academy of Sciences USA, 101, 13542–13547.

    Google Scholar 

  • Mueller, J. L., Ram, K. R., McGraw, L. A., Qazi, M. C. B., Siggia, E. D., Clark, A. G., Aquadro, C. F., & Wolfner, M. F. (2005). Cross-species comparison of Drosophila male accessory gland protein genes. Genetics, 171, 131–143.

    PubMed  PubMed Central  Google Scholar 

  • Mueller, J. L., Page, J. L., & Wolfner, M. F. (2007). An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins Genetics, 175, 777–783.

    PubMed  PubMed Central  Google Scholar 

  • Mulder, R. A., Langmore, N. E. (1993). Dominant males punish helpers for temporary defection in superb fairly wrens. Animal Behaviour, 45, 830–833.

    Google Scholar 

  • Neubaum, D. M., Wolfner, M. F. (1999). Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Current Topics in Developmental Biology, 41, 67–97.

    PubMed  Google Scholar 

  • Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lu, J. N., Lu, J. N., Doctolero, M., Vainer, M., Chan, C., Malley, J., Eastman, S., & Oliver, B. (2004). A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biology, 5, R40.

    PubMed  PubMed Central  Google Scholar 

  • Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525–567.

    Google Scholar 

  • Parker, G. A. (1979). Sexual selection and sexual conflict. New York: Academic.

    Google Scholar 

  • Parker, G. A. (2006). Sexual conflict over mating and fertilisation: An overview. Philosophical Transactions of the Royal Society B, 361, 235–260.

    Google Scholar 

  • Parker, G. A., & Partridge, L. (1998). Sexual conflict and speciation. Philosophical Transactions of the Royal Society B, 353, 261–274.

    Google Scholar 

  • Partridge, L., & Andrews, R. (1985). The effect of reproductive activity on the longevity of male Drosophila melanogaster is not caused by an acceleration of ageing. Journal of Insect Physiology, 31, 393–395.

    Google Scholar 

  • Partridge, L., & Harvey, P. H. (1988). The ecological context of life history evolution. Science, 241, 1449–1454.

    PubMed  Google Scholar 

  • Partridge, L., & Hurst, L. D. (1998). Sex and conflict. Science, 281, 2003–2008.

    PubMed  Google Scholar 

  • Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A. J., Thomson, N.R., Quail, M., Smith, F., Walker, D., Libberton, B., Fenton, A., Hall, N., & Brockhurst, M. A. (2010). Antagonistic coevolution accelerates molecular evolution. Nature, 464, 275–278.

    PubMed  PubMed Central  Google Scholar 

  • Peng, J., Zipperlen, P., & Kubli, E. (2005). Drosophila sex peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Current Biology, 15, 1690–1694.

    PubMed  Google Scholar 

  • Priest, N. K., Galloway, L. F., Roach, D. A. (2008). Mating frequency and inclusive fitness in Drosophila melanogaster. American Naturalist, 171, 10–21.

    PubMed  Google Scholar 

  • Ram, K. R., Wolfner, M. F. (2007). Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integrative and Comparative Biology, 47, 427–445.

    Google Scholar 

  • Rankin, D. J. (2011). Kin selection and the evolution of sexual conflict. Journal of Evolutionary Biology, 24, 71–81.

    PubMed  Google Scholar 

  • Ratnieks, F. L. W., & Reeve, H. K. (1992). Conflict in single-queen Hymenopteran societies: The structure of conflict and processes that reduce conflict in advanced eusocial societies. Journal of Theoretical Biology, 158, 33–65.

    Google Scholar 

  • Ratnieks, F. L. W., Foster, K. R., Wenseleers, T. (2006). Conflict resolution in insect societies. Annual Review of Entomology, 51, 581–608.

    PubMed  Google Scholar 

  • Reinhardt, K., Naylor, R., Siva-Jothy, M. T. (2003). Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proceedings of the Royal Society B, 270, 2371–2375.

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro, C., Dickson, B. J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Current Biology, 20, 1000–1005.

    PubMed  Google Scholar 

  • Rice, W. R. (1992). Sexually antagonistic genes—experimental-evidence. Science, 256, 1436–1439.

    PubMed  Google Scholar 

  • Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.

    PubMed  Google Scholar 

  • Rice, W. R. (1998). Intergenomic conflict, interlocus antagonistic coevolution and the evolution of reproductive isolation. In Howard, D.J. & Berlocher, S.H. (Eds.), Endless forms—species and speciation (pp. 261–270). Oxford: Oxford University Press.

    Google Scholar 

  • Robertson, S. A. (2005). Seminal plasma and male factor signalling in the female reproductive tract. Cell and Tissue Research, 322, 43–52.

    PubMed  Google Scholar 

  • Rönn, J., Katvala, M., & Arnqvist, G. (2007). Coevolution between harmful male genitalia and female resistance in seed beetles. Proceedings of the National Academy of Sciences USA, 104, 10921–10925.

    Google Scholar 

  • Rowe, L., & Day, T. (2006). Detecting sexual conflict and sexually antagonistic coevolution. Philosophical Transactions of The Royal Society B, 361, 277–285.

    Google Scholar 

  • Rowe, L., & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition dependent traits. Proceedings of the Royal Society B, 263, 1415–1421.

    Google Scholar 

  • Schneider, J. M., Gilberg, S., Fromhage, L., & Uhl, G. (2006). Sexual conflict over copulation duration in a cannibalistic spider. Animal Behaviour, 71, 781–788.

    Google Scholar 

  • Schrempf, A., Heinze, J., & Cremer, S. (2005). Sexual cooperation: Mating increases longevity in ant queens. Current Biology, 15, 267–270.

    PubMed  Google Scholar 

  • Shackelford, T. K., Buss, D. M., Weeks-Shackelford, V. (2003). Wife-killings committed in the context of a lovers triangle. Journal of Basic and Applied Social Psychology, 25, 137–143.

    Google Scholar 

  • Sharkey, D. J., Tremellen, K. P., Jasper, M. J., Gemzell-Danielsson, K., Robertson, S. A. (2012). Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. Journal of Immunology, 188, 2445–2454.

    Google Scholar 

  • Short, S. M., Wolfner, M. F., Lazzaro, B. P. (2012). Female Drosophila melanogaster suffer reduced defense against infection due to seminal fluid components. Journal of Insect Physiology, 58, 1192–1201.

    PubMed  PubMed Central  Google Scholar 

  • Sirot, L. K., Wolfner, M. F., Wigby, S. (2011). Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 24, 9922–9926.

    Google Scholar 

  • Sirot, L. K., Wong, A., Chapman, T., Wolfner, M. F. (2014). Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. In Rice, W.R. & Gavrilets, S. (Eds.), Sexual conflict. Cold Spring Harbor: CSHL (in press).

    Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Stibor, H. (1992). Predator induced life-history shifts in a freshwater cladoceran. Oecologia, 92, 162–165.

    Google Scholar 

  • Strassmann, B. I. (1981). Sexual selection, paternal care, and concealed ovulation in humans. Ethology and Sociobiology, 2, 31–40.

    Google Scholar 

  • Summers, K., & Crespi, B. (2008). The androgen receptor and prostate cancer: A role for sexual selection and sexual conflict? Medical Hypotheses, 70, 435–443.

    PubMed  Google Scholar 

  • Swanson, W. J., Aquadro, C. F., & Vacquier, V. D. (2001a). Polymorphism in abalone fertilisation proteins is consistent with neutral evolution of the egg’s receptor for lysin (VERL) and positive Darwinian selection of sperm lysin. Molecular Biology and Evolution, 18, 376–383.

    Google Scholar 

  • Swanson, W. J., Yang, Z., Wolfner, M. F., Aquadro, C. F. (2001b). Positive Darwinian selection drives the evolution of several reproductive proteins in mammals. Proceedings of the National Academy of Sciences USA, 98, 2509–2514.

    Google Scholar 

  • Tanha, M., Beck, C. J. A., Figueredo, A. J., & Raghavan, C. (2010). Sex differences in intimate partners violence and the use of coercive control as a motivational factor for intimate partner violence. Journal of Interpersonal Violence, 25, 1836–1854.

    PubMed  Google Scholar 

  • Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Cambridge: Harvard University Press.

    Google Scholar 

  • Thornhill, R., & Gangestad, S.W. (1999). The scent of symmetry: A human sex pheromone that signals fitness? Evolution and Human Behaviour, 20, 175–201.

    Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology, 46, 35–57.

    Google Scholar 

  • Trivers, R.L. (1972). Parental in investment and sexual selection. In Campbell, B. (Ed) Sexual selection and the descent of man. (pp. 136–179). London: Heinemann.

    Google Scholar 

  • Ăšbeda, F., & Wilkins, J. F. (2008). Imprinted genes and human disease: An evolutionary perspective. Advances in Experimental Medicine and Biology, 626, 101–115.

    PubMed  Google Scholar 

  • VanderLaan, D. P., Forrester, D. L., Petterson, L. J., Vasey, P. L. (2012). Offspring production among the extended relatives of samoan men and Fa’afafine. PLoS One, 7, e36088.

    PubMed  PubMed Central  Google Scholar 

  • Vasey, P. L., Pocock, D. S., VanderLaan, D. P. (2007). Kin selection and male androphilia in Samoan fa’afaine. Evolution and Human Behaviour, 28, 159–167.

    Google Scholar 

  • Vasey, P. L., & VanderLaan, D. P. (2010). Avuncular tendencies and the evolution of male androphilia in Samoan fa’afaine. Archives of Sexual Behavior, 39, 821–830.

    PubMed  Google Scholar 

  • Wagstaff, B. J., & Begun, D. J. (2005a). Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Molecular Biology and Evolution, 22, 818–832.

    Google Scholar 

  • Wagstaff, B. J., & Begun, D. J. (2005b). Molecular population genetics of accessory gland protein genes and testis-expressed genes in Drosophila mojavensis and D. arizonae. Genetics, 171, 1083–1101.

    Google Scholar 

  • Waynforth, D. (2012). Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proceedings of the Royal Society B, 279, 2998–3002.

    PubMed  PubMed Central  Google Scholar 

  • West, S. A., Griffin, A. S., & Gardner, A. (2007a). Evolutionary explanations for cooperation. Current Biology, 17, R661–R672.

    Google Scholar 

  • West, S. A., Griffin, A. S., & Gardner, A. (2007b). Social semantics: Altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20, 415–432.

    Google Scholar 

  • West, S. A., El Mouden, C., & Gardner, A. (2011). Sixteen misconceptions about the evolution of cooperation in humans. Evolution and Human Behaviour, 32, 231–262.

    Google Scholar 

  • West-Eberhard, M. J. (1979). Sexual selection, social competition, and evolution. Proceedings of the American Philosophy Society, 123, 222–234.

    Google Scholar 

  • Westendorp, R., & Kirkwood, T. (1998). Human longevity at the cost of reproductive success. Nature, 396, 743–746.

    PubMed  Google Scholar 

  • Wigby, S., & Chapman, T. (2004). Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution, 58, 1028–1037.

    PubMed  Google Scholar 

  • Wigby, S., & Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316–321.

    PubMed  Google Scholar 

  • Wigby, S., Sirot, L. K., Linklater, J. R., Buehner, N., Calboli, F. C. F., Bretman, A., Wolfner, M. F., & Chapman, T. (2009). Seminal fluid protein allocation and male reproductive success. Current Biology, 19, 1–7.

    Google Scholar 

  • Williams, G. C. (1966a). Adaptation and natural selection. Princeton: Princeton University Press.

    Google Scholar 

  • Williams, G. C. (1966b). Natural selection, the costs of reproduction and a refinement of Lack’s principle. American Naturalist, 100, 687–690.

    Google Scholar 

  • Wilson, M., & Daly, M. (1997). Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. British Medical Journal, 314, 1271.

    PubMed  PubMed Central  Google Scholar 

  • Wolfner, M. F. (2002). The gifts that keep on giving: Physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity, 88, 85–93.

    PubMed  Google Scholar 

  • Wong, A. (2010). Testing the effects of mating system variation on rates of molecular evolution in primates. Evolution, 64, 2779–2785.

    PubMed  Google Scholar 

  • Wong, A. (2011). The molecular evolution of animal reproductive tract proteins: What have we learned from mating-system comparisons? International Journal of Evolutionary Biology, 2011, 2011.

    Google Scholar 

  • Wong, A., Turchin, M. C., Wolfner, M. F., & Aquadro, C. F. (2008). Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs. Moleulcar Biology and Evolution, 25, 497–506.

    Google Scholar 

  • Wyckoff, G. J., Wu, C. I. (1997). Sexual selection at the molecular level:evolutionary analysis of two sperm associated proteins in primates. American Journal of Human Genetics, 61, A215.

    Google Scholar 

  • Yapici, N., Kim, Y.-J., Ribeiro, C., & Dickson, B. J. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature, 451, 33–37.

    PubMed  Google Scholar 

  • Young, A. J., Carlson, A. A., Monfort, S. L., Russell, A. F., Bennett, N. C., & Clutton-Brock, T. H. (2006). Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proceedings of the National Academy of Sciences USA, 103, 12005–12010.

    Google Scholar 

  • Zhong, W., McClure, C. D., Evans, C. R., Mlynski, D. T., Immonen, E., Ritchie, M. G., & Priest, N. K. (2013). Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections. Proceedings of the Royal Society B, 280, 2013–2018.

    Google Scholar 

Download references

Acknowledgements

I thank Todd Shackelford and Ranald Hansen for the invitation to the 2013 Evolution of Sexuality Conference and for the invitation to write this chapter. I thank Andrew Bourke, David Buss and Todd Shackelford for their generous and insightful comments, and Andrew Bourke for troubleshooting EndNote. Finally, I thank the University of East Anglia, the Natural Environment Resources Council, and the Biotechnology and Biological Sciences Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chapman, T. (2015). Sexual Conflict and Evolutionary Psychology: Towards a Unified Framework. In: Shackelford, T., Hansen, R. (eds) The Evolution of Sexuality. Evolutionary Psychology. Springer, Cham. https://doi.org/10.1007/978-3-319-09384-0_1

Download citation

Publish with us

Policies and ethics