Skip to main content

Insights into Heart Development and Regeneration

  • Chapter
  • First Online:
Introduction to Translational Cardiovascular Research

Abstract

The heart is one of the first organs to form and function during the development of an organism. Cardiac development, morphology and transcriptional networks involved in cardiac patterning, across species, are reviewed. These genes are most commonly mutated in Congenital Heart Disease. In parallel, recent advances in understanding how the cardiac development program is recapitulated during cardiac regeneration are also presented. We discuss models of cardiac regeneration in zebrafish and newborn mice and how these could be utilized in the context of translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Smads are cytoplasm-signaling proteins which regulate gene transcription in response to BMP and its receptors of the TGF-β superfamily.

  2. 2.

    Differences in nomenclature rules between species are indicated in the way orthologue genes and proteins are written: for example GATA4 refers to the human gene, Gata4 to the mouse and gata4 to the zebrafish orthologue. When referring to proteins GATA4 refers to the human or mouse while Gata4 to the zebrafish one.

  3. 3.

    Wnt canonical signaling refers to the signaling mediated by the β-catenin.

Abbreviations

ANF:

Atrial natriuretic factor

AVC:

Atrioventricular canal

BMP:

Bone morphogenetic protein

CMC:

Cardiomyocytes

ECM:

Extracellular cell matrix

EMT:

Epithelial to mesenchymal transition

Eomes:

Eomesodermin

FGF:

Fibroblast growth factor

FHF:

First heart field

FUCCI:

Fluorescent ubiquitination-based cell cycle indicator

NGF:

Nerve growth factor

OFT:

Outflow tract

PDGF:

Platelet-derived growth factor

REG:

Regeneration

SHF:

Second heart field

SRF:

Serum response factor

TGF-β:

Transforming growth factor beta

References

  1. Rana MS, Christoffels VM, Moorman AF. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf). 2013;207:588–615.

    CAS  Google Scholar 

  2. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407:221–6.

    CAS  PubMed  Google Scholar 

  3. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3:544–56.

    CAS  PubMed  Google Scholar 

  4. Abu-Issa R, Kirby ML. Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol. 2007;23:45–68.

    CAS  PubMed  Google Scholar 

  5. Tam PP, Parameswaran M, Kinder SJ, Weinberger RP. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development. 1997;124:1631–42.

    CAS  PubMed  Google Scholar 

  6. Sylva M, van den Hoff MJ, Moorman AF. Development of the human heart. Am J Med Genet A. 2013. doi:10.1002/ajmg.a.35896.

    PubMed  Google Scholar 

  7. López-Sánchez C, García-Martínez V. Molecular determinants of cardiac specification. Cardiovasc Res. 2011;91:185–95.

    PubMed  Google Scholar 

  8. Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 1993;119:31–40.

    CAS  PubMed  Google Scholar 

  9. Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med. 2013;3:a013847.

    PubMed  Google Scholar 

  10. Abu-Issa R, Kirby ML. Patterning of the heart field in the chick. Dev Biol. 2008;319:223–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature. 2001;411:965–9.

    CAS  PubMed  Google Scholar 

  12. Yuasa S, Itabashi Y, Koshimizu U, Tanaka T, Sugimura K, Kinoshita M, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005;23:607–11.

    CAS  PubMed  Google Scholar 

  13. de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, et al. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res. 2012;110:578–87.

    PubMed  Google Scholar 

  14. Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci U S A. 2007;104:18531–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kitajima S, Takagi A, Inoue T, Saga Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development. 2000;127:3215–26.

    CAS  PubMed  Google Scholar 

  16. Tzahor E, Lassar AB. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 2001;15:255–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001;15:316–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CAS  PubMed  Google Scholar 

  19. Rossant J, Ciruna B, Partanen J. FGF signaling in mouse gastrulation and anteroposterior patterning. Cold Spring Harb Symp Quant Biol. 1997;62:127–33.

    CAS  PubMed  Google Scholar 

  20. Zaffran S, Frasch M. Early signals in cardiac development. Circ Res. 2002;91:457–69.

    CAS  PubMed  Google Scholar 

  21. Reifers F, Walsh EC, Léger S, Stainier DY, Brand M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development. 2000;127:225–35.

    CAS  PubMed  Google Scholar 

  22. Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008;22:2479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Costello I, Pimeisl IM, Dräger S, Bikoff EK, Robertson EJ, Arnold SJ. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol. 2011;13:1084–91.

    CAS  PubMed  Google Scholar 

  24. Barron MR, Belaguli NS, Zhang SX, Trinh M, Iyer D, Merlo X, et al. Serum response factor, an enriched cardiac mesoderm obligatory factor, is a downstream gene target for Tbx genes. J Biol Chem. 2005;280:11816–28.

    CAS  PubMed  Google Scholar 

  25. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–29.

    CAS  PubMed  Google Scholar 

  26. Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124:2099–117.

    CAS  PubMed  Google Scholar 

  27. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9:1654–66.

    CAS  PubMed  Google Scholar 

  28. Caprioli A, Koyano-Nakagawa N, Iacovino M, Shi X, Ferdous A, Harvey RP, et al. Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation. 2011;123:1633–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Tu CT, Yang TC, Tsai HJ. Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebrafish embryos. PLoS One. 2009;4:e4249.

    PubMed Central  PubMed  Google Scholar 

  30. Sizarov A, Ya J, de Boer BA, Lamers WH, Christoffels VM, Moorman AF. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation. 2011;123:1125–35.

    PubMed  Google Scholar 

  31. Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol. 1995;168:567–74.

    CAS  PubMed  Google Scholar 

  32. Ticho BS, Stainier DY, Fishman MC, Breitbart RE. Three zebrafish MEF2 genes delineate somitic and cardiac muscle development in wild-type and mutant embryos. Mech Dev. 1996;59:205–18.

    CAS  PubMed  Google Scholar 

  33. Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, et al. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development. 2013;140:1639–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol. 1999;211:100–8.

    CAS  PubMed  Google Scholar 

  35. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    CAS  PubMed  Google Scholar 

  36. Begemann G, Ingham PW. Developmental regulation of Tbx5 in zebrafish embryogenesis. Mech Dev. 2000;90:299–304.

    CAS  PubMed  Google Scholar 

  37. Yuasa S, Onizuka T, Shimoji K, Ohno Y, Kageyama T, Yoon SH, et al. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ Res. 2010;106:1083–91.

    CAS  PubMed  Google Scholar 

  38. Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart. 2003;89:806–14.

    PubMed Central  PubMed  Google Scholar 

  39. van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res. 2009;104:179–88.

    PubMed Central  PubMed  Google Scholar 

  40. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–35.

    CAS  PubMed  Google Scholar 

  41. Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, et al. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development. 2013;140:1353–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238:97–109.

    CAS  PubMed  Google Scholar 

  43. Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128:3179–88.

    CAS  PubMed  Google Scholar 

  44. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1:435–40.

    CAS  PubMed  Google Scholar 

  45. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.

    CAS  PubMed  Google Scholar 

  46. Hami D, Grimes AC, Tsai HJ, Kirby ML. Zebrafish cardiac development requires a conserved secondary heart field. Development. 2011;138:2389–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009;136:1633–41.

    PubMed Central  PubMed  Google Scholar 

  48. Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development. 2012;139:1931–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336:137–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development. 2008;135:789–98.

    CAS  PubMed  Google Scholar 

  51. Holtzman NG, Schoenebeck JJ, Tsai HJ, Yelon D. Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development. 2007;134:2379–86.

    CAS  PubMed  Google Scholar 

  52. Lee RK, Stainier DY, Weinstein BM, Fishman MC. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development. 1994;120:3361–6.

    CAS  PubMed  Google Scholar 

  53. Cohen-Gould L, Mikawa T. The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol. 1996;177:265–73.

    CAS  PubMed  Google Scholar 

  54. Linask KK, Lash JW. Early heart development: dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn. 1993;196:62–9.

    CAS  PubMed  Google Scholar 

  55. Sugi Y, Markwald RR. Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Dev Biol. 1996;175:66–83.

    CAS  PubMed  Google Scholar 

  56. Harris IS, Black BL. Development of the endocardium. Pediatr Cardiol. 2010;31:391–9.

    PubMed Central  PubMed  Google Scholar 

  57. Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E. The heart endocardium is derived from vascular endothelial progenitors. Development. 2011;138:4777–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bussmann J, Bakkers J, Schulte-Merker S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet. 2007;3:e140.

    PubMed Central  PubMed  Google Scholar 

  59. Nemer G, Nemer M. Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development. 2002;129:4045–55.

    CAS  PubMed  Google Scholar 

  60. Ferdous A, Caprioli A, Iacovino M, Martin CM, Morris J, Richardson JA, et al. Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci U S A. 2009;106:814–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell. 2009;16:180–95.

    PubMed Central  PubMed  Google Scholar 

  62. Männer J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec. 2000;259:248–62.

    PubMed  Google Scholar 

  63. Smith KA, Chocron S, von der Hardt S, de Pater E, Soufan A, Bussmann J, et al. Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Dev Cell. 2008;14:287–97.

    CAS  PubMed  Google Scholar 

  64. de Campos-Baptista MI, Holtzman NG, Yelon D, Schier AF. Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn. 2008;237:3624–33.

    PubMed Central  PubMed  Google Scholar 

  65. Baker K, Holtzman NG, Burdine RD. Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci U S A. 2008;105:13924–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, et al. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev Biol. 2008;315:55–71.

    CAS  PubMed  Google Scholar 

  67. Lin X, Xu X. Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development. 2009;136:207–17.

    CAS  PubMed  Google Scholar 

  68. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–72.

    CAS  PubMed  Google Scholar 

  69. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell. 2001;106:781–92.

    CAS  PubMed  Google Scholar 

  70. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.

    CAS  PubMed  Google Scholar 

  71. Houweling AC, Somi S, Van Den Hoff MJ, Moorman AF, Christoffels VM. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec. 2002;266:93–102.

    CAS  PubMed  Google Scholar 

  72. Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 2007;5:e53.

    PubMed Central  PubMed  Google Scholar 

  73. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229:763–70.

    CAS  PubMed  Google Scholar 

  74. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77:1–6.

    CAS  PubMed  Google Scholar 

  75. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004;95:459–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91:279–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7.

    CAS  PubMed  Google Scholar 

  78. Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J, et al. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2004;2:E129.

    PubMed Central  PubMed  Google Scholar 

  79. Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA, Ober EA, et al. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development. 2005;132:4193–204.

    CAS  PubMed  Google Scholar 

  80. Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 2009;7:e1000246.

    PubMed Central  PubMed  Google Scholar 

  81. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol. 2012;100:253–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kelly BB, Narula J, Fuster V. Recognizing global burden of cardiovascular disease and related chronic diseases. Mt Sinai J Med. 2012;79:632–40.

    PubMed  Google Scholar 

  83. Spallanzani L. An essay on animal reproductions. London: T. Becket and P.A. de Hondt; 1768.

    Google Scholar 

  84. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110:187–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogorek B, et al. Cardiomyogenesis in the adult human heart. Circ Res. 2010;107:305–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187:249–53.

    CAS  PubMed  Google Scholar 

  88. Bettencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. Cell Sci. 2003;116:4001–9.

    CAS  Google Scholar 

  89. Beis D, Stainier DY. In vivo cell biology: following the zebrafish trend. Trends Cell Biol. 2006;16:105–12.

    CAS  PubMed  Google Scholar 

  90. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 1997;377:577–95.

    CAS  PubMed  Google Scholar 

  91. Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG. Regeneration of the pancreas in adult zebrafish. Diabetes. 2009;58:1844–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science. 2012;338:1353–6.

    CAS  PubMed  Google Scholar 

  93. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–90.

    CAS  PubMed  Google Scholar 

  94. Itou J, Kawakami H, Burgoyne T, Kawakami Y. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol Open. 2012;1:739–46.

    PubMed Central  PubMed  Google Scholar 

  95. Gonzalez-Rosa JM, Mercader N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc. 2012;7:782–8.

    CAS  PubMed  Google Scholar 

  96. Chablais F, Veit J, Rainer G, Jazwinska A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol. 2011;11:21.

    PubMed Central  PubMed  Google Scholar 

  97. Curado S, Stainier DY, Anderson RM. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc. 2008;3:948–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development. 2011;138:3421–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 2013;498:497–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Jopling C, Sune G, Faucherre A, Fabregat C, Izpisua Belmonte JC. Hypoxia induces myocardial regeneration in zebrafish. Circulation. 2012;126:3017–27.

    PubMed  Google Scholar 

  101. Lam NT, Currie PD, Lieschke GJ, Rosenthal NA, Kaye DM. Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure. PLoS One. 2012;7:e53210.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607–19.

    CAS  PubMed  Google Scholar 

  103. Knowlton AA, Connelly CM, Romo GM, Mamuya W, Apstein CS, Brecher P. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest. 1992;89:1060–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Rysä J, Leskinen H, Ilves M, Ruskoaho H. Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension. 2005;45:927–33.

    PubMed  Google Scholar 

  105. Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382:427–35.

    CAS  PubMed  Google Scholar 

  106. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464:606–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464:601–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development. 2012;139:4133–42.

    CAS  PubMed  Google Scholar 

  109. Lien C-L, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 2006;4:e260.

    PubMed Central  PubMed  Google Scholar 

  110. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102:1169–81.

    CAS  PubMed  Google Scholar 

  111. Raya A, Koth CM, Buscher D, Kawakami Y, Itoh T, Raya RM, et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci U S A. 2003;100 Suppl 1:11889–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004;15:237–54.

    CAS  PubMed  Google Scholar 

  114. Hoover LL, Burton EG, Brooks BA, Kubalak SW. The expanding role for retinoid signaling in heart development. Sci World J. 2008;8:194–211.

    CAS  Google Scholar 

  115. Kikuchi K, Holdway Jennifer E, Major Robert J, Blum N, Dahn Randall D, Begemann G, et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell. 2011;20:397–404.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, et al. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res. 2010;106:1275–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Pantos C, Mourouzis I, Cokkinos DV. Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality? Can J Physiol Pharmacol. 2012;90:977–87.

    CAS  PubMed  Google Scholar 

  118. Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO, et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development. 2013;140:660–6.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Beis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beis, D., Kalogirou, S., Tsigkas, N. (2015). Insights into Heart Development and Regeneration. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08798-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08797-9

  • Online ISBN: 978-3-319-08798-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics