
Call-Based Dynamic Programming for the

Precedence Constrained Line Traveling Salesman

Thierry Benoist1, Antoine Jeanjean2, and Vincent Jost3

1 Innovation 24 - LocalSolver, Paris, France
tbenoist@localsolver.com

2 Recommerce Solutions, Paris France
antoine.jeanjean@recommerce.com

3 Grenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, France
Vincent.Jost@grenoble-inp.fr

Abstract. The Precedence Constrained Line Traveling Salesman is a
variant of the Traveling Salesman Problem, where the cities to be visited
lie on a line, the distance between two cities is the absolute difference
between their abscissae and a partial ordering is given on the set of
cities. Such a problem is encountered on linear construction schemes for
instance. Using key dominance properties and lower bounds, we design a
call-based dynamic program able to solve instances with up to 450 cities.

1 Introduction

The Line-TSP is a variant of the Traveling Salesman Problem (TSP) where the
cities to be visited lie on a line, and the distance between two cities is the absolute
difference between their abscissae. Although trivial in this pure formulation, the
problem becomes interesting when side-constraints are added. For instance, [13]
considers the case where each city must be visited within a certain time-window.
The present paper deals with the case where a partial ordering is given on the set
of cities that is to say that some precedence constraintsA must be visited before B
must be satisfied. In practice this problem is encountered on linear construction
schemes when a set of partially ordered tasks (up to several hundreds) must be
performed by a resource whose traveling distance must be minimized, like an
excavation engine on a highway construction site for instance [8]. To the best
of our knowledge, this problem was not studied in the literature before, but its
NP-completeness was established as a special case in [3]. Linear structures also
occur in N-line TSP [4,12] namely an Euclidian TSP with a limited number of
of different abscissae and also in the so-called convex hull and line TSP [5,6].

After a formal definition of the problem we introduce a key dominance prop-
erty.In section 2 we define a lower bound based on the splitting of the line in
sections. Finally, we propose a call-based dynamic programming approach, where
branches are pruned with our lower bound. This algorithm is experimented in
section 4.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014

2 T. Benoist, A. Jeanjean, and V. Jost

1.1 Problem Definition and Notations

Definition 1. The Precedence Constrained Line TSP (PC-Line-TSP) reads as
follows.

Given a set P of n cities, each with an abscissa Xi (i ∈ [1, n]), a partial
order ≺ on P and an integer K; find a permutation V of P such that :

∑n
i = 1 | XV (i) − XV (i−1) | ≤ K , with XV (0) = 0

∀ (i , j) ∈ P2 such that i ≺ j , V−1(i) < V−1(j),
with V−1(i) the position of city i in the permuation.

(1)

The above sum of differences of abscissae will be referred to as the length of
the permutation. We will denote by m the size of ≺ that is to say the number
of ordered pairs defining this partial order. Figure 1 represents a instance of
PC-Line-TSP with four cities, the Hasse diagram being represented on the left
side. The dotted arrows represent a feasible solution (visiting order).

2

3 2

1

L

4

0

0 3 1 4

Fig. 1. A Precedence Constrained Line TSP

1.2 Properties

Definition 2. In a solution, a procrastination is a city which is passed through
without being visited whereas all its predecessor have already been visited.

Definition 3. A solution is called dominating (ou non-procrastinating) is it
contains no procrastination. In other words it never passes through an abscissa
without visiting all available cities at this abscissa (namely cities whose prede-
cessors have already been visited).

Lemma 1. There exists a dominating optimal solution for each problem.

Proof. Let V be a non dominating permutation, that is to say that there exists
at least one procrastination city d . By definition there are two consecutive cities
a and b in the permutation such that:

Xd ∈ [Xa ,Xb [or Xd ∈]Xb , Xa] (2)

Dynamic Programming for PC-LineTSP 3

and such that all predecessors of d (possibly including a) are before a in
permutation V (see Figure 2), while city d is visited later, between two cities
c and e. Note that c may equal b and that e may not exist (in which case d is
the last city of the permutation), without affecting the validity of the reasoning
below.

Let V ′ be the permutation obtained from V by moving city d between a and
b. V ′ satisfies the partial order because all predecessors of d are before a in both
permutations. Now we prove that the length or permutation V ′ is smaller or
equal to the length or permutation V .

– the path a → d → b is equal to path a → b (d being between a and b).
– the path c → e is smaller or equal to path c → d → e since distances

on a line satisfy the triangular inequality (and if e does not exists, the path
c → d is merely removed.

Repeating this transformation, all procrastinations can be eliminated, while
preserving or decreasing the length of the permutation, thus building a dominat-
ing permutation of equal or smaller length. Hence any problem has an optimal
dominating solution. �

ba c d e

Fig. 2. Procrastination removal

Corollary 1. A solution can be written as a sequence of t abscissae with t ≤ n.
This sequence (or path) induces a visiting order (unique but for the visiting order
of cities at the same abscissa). Hence the PC-Line-TSP can be reformulated as a
question: is there a sequence of abscissae (or path) whose length is smaller than
K and which visits all cities ?

Corollary 2. The special case where cities can take only two different abscis-
sae (|{Xi, i ∈ [0, n]}| = 2) is polynomial. Its optimal path alternates the two
abscissae. It can be computed in linear time.

1.3 Complexity

We have seen above that the problem is polynomial when limited to 2 abscissae.
In the general case this problem was proven to be NP-hard by [3], by reduction
from the Shortest Common Supersequence problem. It is NP-hard as soon as
the number of number of abscissae if larger or equal to 3 (see [9]).

2 Lower Bounds

In this section we compute lower bounds for the PC-Line-TSP problem.

4 T. Benoist, A. Jeanjean, and V. Jost

Trivial bound LB0. The distance between the maximum and minium abscissae
plus the distance from 0 the closest extremity is a lower bound of the traveled
distance.

R = max
i∈[0,n]

Xi

L = min
i∈[0,n]

Xi

LB0 = R− L+min(|R|, |L|)
Definition 4. A section [Xl; Xr] is a pair of consecutive abscissae. The linear
line is thus made of less than n disjoint sections (see Figure 4). The length of
section [Xl; Xr] is Xr − Xl. In what follows abscissae are indexed (from left
to right) from 0 to p, with p ≤ n . The section between abscissae k − 1 and k
is referred to as the kth section, and its with is denoted wk.

In this section we define a lower bound LB1 based on this decomposition into
sections and on the polynomial 2-abscissae case evoked in corollary 2.

For each section k defined by abscissae [Xl; Xr] we build a problem with
two abscissae, setting to zero all abscissae smaller or equal to Xl and setting to
wk = Xr − Xl all abscissae larger or equal toXr. The algorithm presented below
computes a lower bound to the number of times this section will be crossed.

Algorithm. The Algorithm 1 details the computation of this lower bound. The
initial scan of the graph modifying abscissae is done in O(n). We define opt l(k)
(resp. opt r(k)), the minimum number of times section k will be crossed (see
Figure 3) considering that the terminal city (the last city in the permutation)
lies to the left (resp. to the right) of the section.

L(t)

Left Right

0

Fig. 3. Scanning a section

We denote by B(k) the lower bound of the total length when the last abscissa
is abscissa k (k ∈ [0, p]). It is defined by the following recursive formula:

B(0) =
∑

k∈[1, p] opt l(k)

∀ k ∈ [1, p], B(k) = B(k − 1) − opt l(k − 1) + optr(k − 1)
(3)

Dynamic Programming for PC-LineTSP 5

Let F be the set of abscissae having at least one city without successor in the
partial order. Since the final city of any permutationwill belong to F , the following
expression is a lower bound of the traveled distance of the PC-Line-TSP.

LB1 = min
k ∈ F

B(k) (4)

For each section k ∈ [1, p], opt l(k) is computed in O(n + m) with n the
number of cities and m the size of the partial order. B(0) is computed in O(p)
with p ≤ n and each B(k) is computed in O(1). Finally the complexity of the
computation of this lower bound is O(p (n + m)). Since p is smaller than
n et m is smaller than n2, the complexity is cubic in the worst case.

Algorithm 1. Bound-by-section

input : The set of abscissae, cities and the partial order
output: A lower bound of the total traveled distance

begin
for k ∈ [1, p] do

Define the two-abscissae problem associated to section k, with starting
city at abscissa 0
Distance = 0
CurrentAbscissa = 0
Visit all available cities at CurrentAbscissa
while Some cities remains to be visited do

Change CurrentAbscissa to the other abscissa
Distance + = wk

Visit all available cities at CurrentAbscissa

if CurrentAbscissa = wk then
opt l(t) = Distance + wk optr(t) = Distance

else
opt l(t) = Distance optr(t) = Distance + wk

B(0) =
∑

k∈[1,p] opt l(k)

for k ∈ [1, p] do
B(k) = B(k − 1) − opt l(k − 1) + optr(k − 1)

return mink∈F B(k)

Example. Consider a PC-Line-TSP made of six cities partially ordered as in
Figure 4. Here the set of possible terminal cities (cities without successors) is
{N1 , N4 , N5}. The algorithm 1 considers each of the five sections one by one.
On the left of Figure 4, section 2 (between abscissae 2 and 5) is emphasized,
and the two-abscissae problem associated to this section is illustrated (defined
on abscissae 0 and w3 = 3). The computation of opt l(2) and opt r(2) starts
with the visit of city N0 on the left side. N1 cannot be visited yet due to its two
unvisited predecessors N2 and N3. A first crossing of the section is needed then.

6 T. Benoist, A. Jeanjean, and V. Jost

30

0 4 6 1082

0 4 6 1082

Fig. 4. A simple PC-Line-TSP instance and the two-abscissae problem attached to is
second section

On the right side, N2 and N3 are visited, thus allowing the visit of N4 et N5.
The section need to be crossed a second time in order to visit N1 on the left
side, thus completing the path. Finally B(2) = 2 × 3 = 6.

For each section k ∈ [1, 5], opt l(k) et optr(k) take the following values :

opt l(1) = 2 × 2 = 4 et optr(1) = 1 × 2 = 2
opt l(2) = 2 × 3 = 6 et optr(2) = 3 × 3 = 9
opt l(3) = 2 × 2 = 4 et optr(3) = 3 × 2 = 6
opt l(4) = 2 × 1 = 2 et optr(4) = 1 × 1 = 1
opt l(5) = 2 × 2 = 4 et optr(5) = 1 × 2 = 2

(5)

and we can compute the following B(k) :

B(0) =
∑

k∈[1,p] opt l(k) = 4 + 6 + 4 + 2 + 4 = 20

B(1) = B(0) + opt l(0) + opt l(0) = 20 − 4 + 2 = 18
B(2) = B(1) + opt l(1) + opt l(1) = 18 − 6 + 9 = 21
B(3) = B(2) + opt l(2) + opt l(2) = 21 − 4 + 6 = 23
B(4) = B(3) + opt l(3) + opt l(3) = 23 − 2 + 1 = 22
B(5) = B(4) + opt l(4) + opt l(4) = 22 − 4 + 2 = 20

(6)

Since F = {N1 , N4 , N5}, the final bound is min(B(1), B(4), B(5)) = 18.

Dynamic Programming for PC-LineTSP 7

0 4 62

2

2

2

0
2

0

0

0

Fig. 5. Suboptimal lower bound

Counter-Example. The example on Figure 5 illustrates the non-optimality of
lower bounds LB1. There is only one possible terminal city (N7). On section
[2, 5], we obtain a lower bound equal to 6 and on section [5, 7] we obtain a
lower bound equal to 4, hence LB1 = 10. However, the optimal solution is 20 :
N0 − 2 → N2 −2 → N3 −3 → N1 −3 → N4 −2 → N6 −2 → N7 −3 → N5

−3 → N7 :

3 Exact Algorithm

3.1 Dynamic Programming

Any dominating solution to the PC-Line-TSP problem can be expressed as a
sequence of left/right decisions. That is to say that each time the current abscissa
has no available city, we are facing a binary choice: either go to the closest
abscissa with available cities to the left or to the closest abscissa with available
cities to the right. It means that a brute force enumeration of all dominating
solutions has complexity O(2n), while the number of possible permutations is
n!. We present in this section a dynamic programming approach similar to the
one proposed by [7] for the classical TSP, observing that at any moment in
the search, the remaining distance to be traveled only depends on the current
abscissa and on the set of remaining cities. The worst case complexity of this
algorithm remains O(2n), but thanks to the non-procrastination rule and to the
partial ordering of cities many sets of cities cannot be encountered as a set of
remaining cities, what makes this algorithm very effective in practice.

8 T. Benoist, A. Jeanjean, and V. Jost

In essence, the minimum length Lmin(x, Q) for visiting a set of cities Q ⊆ P
starting from abscissa x and subject to partial order ≺ can be expressed with
the following recursive formula, where A(y) denotes the set of available1 cities
at abscissa y while XR (resp. XL) is the closest abscissa to the right of x (resp.
to the left of x) such that A(XR) �= ∅ (resp. A(XL) �= ∅). Note that XR and
XL are functions of x and Q, but these parameters are omitted in the remaining
of the paper for the sake of readability. Without loss of generality we assume
A(x) = ∅.

Lmin(x, ∅) = 0

Lmin(x, Q) = min(XR − x + Lmin(XR, Q \ A(XR)),

x − XL + Lmin(XL, Q \ A(XL))

This dynamic programming approach yields the optimal solution of the PC-
Line-TSP as Lmin(0, P). Inspired by [1] we design a call-based dynamic program
based on this recursive formula. Following their terminology, call based dynamic
programming consists in implementing a classical tree search where the optimum
for each subtree is stored and re-used each time the same sub-tree is encountered
(same x and same Q in our case). Compared to bottom-up dynamic program-
ming implementation, the call-based approach allows introducing lower-bounds,
upper-bounds and heuristics in order to speed up the search.

As detailed in algorithm 2, the central function becomes Lmin(x, Q, U) where
U is an upper bound, and the optimum of the problem is Lmin(0, P,+∞). As
soon as a first solution is found, it is used to define upper-bounds for other
branches thus excluding solutions leading to a total traveled distance larger or
equal to the best found so far. The trivial lower-bound LB0 defined in section 1
is used to eliminate such sub-optimal solutions as soon as possible. In section 4
we will also give the results obtained when using bound LB1 instead.

The DP-labeled lines are specific to dynamic programming2: storedBest[x,Q]
is the minimum distance for visiting cities of Q when starting from abscissa x,
hence before exploring a subtree (x,Q), the algorithm always check whether its
minimum distance is already known (that is to say if storedBest[x,Q] is de-
fined). Similarly storedLB[x,Q] is the best known lower-bound to this distance.
Indeed once a subtree was vainly explored searching for a solution with a trav-
eled distance strictly smaller than U , this information is worth storing because
later in the search this subtree may be considered again with some upper bound
U ′. Then if U ′ ≤ U the re-exploration of this subtree is avoided. In theory the
number nodes in the search tree can be larger when using lower bounds because
the same sub-problem (x,Q) can be explored several time with increasing upper
bounds. However the pruning effect largely compensates for this in practice. For

1 These cities may be partially ordered by ≺ but they can all be visited if we reach
abscissa y.

2 In other words, removing the DP-labeled lines results in a classical tree search algo-
rithm.

Dynamic Programming for PC-LineTSP 9

Algorithm 2. Lmin(x,Q, U)

input : Current abscissa x, remaining cities Q, an upper bound U
output: The length of the best solution if < U , U otherwise

begin
if Q = ∅ then Return 0

DP if storedBest[x, Q] then Return storedBest[x, Q]
DP if not(storedLB[x, Q]) then storedLB[x, Q] = LB0(x, Q)
DP if storedLB[x, Q] ≥ U then Return U

if LB0(x, Q) ≥ U then Return U
Best = U
if XR �= +∞ then

Dright = XR − x
Best = Dright +

Lmin(XR, Q \ A(XR), Best − Dright)

if XL �= −∞ then
Dleft = x − XL

Best = Dleft +
Lmin(XL, Q \ A(XL), Best − Dleft)

DP if Best < U then storedBest[x, Q] = Best
DP else storedLB[x, Q] = U

Return min(Best, U)

instance once a solution of length 35 has been found, a certain state (x,Q) might
be reached after a traveling distance of 10 (visiting cities in P \ Q) hence with
an upper bound of 25; but later in the search this sate may be reached after a
traveling distance of 9 that is to say with an upper bound of 26, in which case
this subtree must be explored again.

With storedBest[x,Q] and storedLB[x,Q] stored in hashtables, these values
can be accessed and updated in constant time. Provided that A(y) is dynamically
maintained for each abscissa y (in O(m) amortized complexity), XR and XL can
be obtained in O(p) (recall that m is the size of the partial order and p is the
number of different abscissae). Maintaining the leftmost and rightmost abscissae
in Q makes sure that LB0 is computed in constant time. If LB1 is used instead
of LB0, its complexity is O(p (n + m)) as shown in section 1.

3.2 Heuristics

In algorithm 2, the right side is systematically explored before the left side.
However, different strategies can be applied. For instance a NearestNeighbor
heuristic would consist in starting with the left side when x−XL < XR−x (and
starting with the right side otherwise). Recall that for the Euclidian TSP this
simple heuristic averages less than 25% above the Held-Karp lower bound [10]
and is guaranteed to remain within a 1

2 (log2(N)+1) ratio of the optimal solution

10 T. Benoist, A. Jeanjean, and V. Jost

[11]. Alternatively an Inertial heuristic would consist in continuing rightwards
if and only if the current abscissa was reached from the left. Finally, based on
our lower bound LB0 or LB1, an A� heuristic consists in evaluating the lower
bound on each branch and then start with the most promising one, that is to
say the one with the smallest lower bound.

3.3 Dominance Rules

Lemma 2. Let Z be a subset of P which is totally ordered by ≺, and let T be
the subset of all cities of P \ Z necessarily visited by a path visiting Z. If T has
no successor in P ′ (�a ∈ T, b ∈ P ′, a ≺ b), then the problem restricted to cities
in P ′ = P \ T has the same optimal value as the initial problem.

Proof. Clearly any solution of the initial problem is also a solution of the problem
limited to P ′. Inversely any solution path of the problem limited to P ′ is a super-
sequence of the the sequence of abscissae of set Z (ordered by ≺), hence the cities
of T can be inserted in the solution without increasing its length, while respecting
the precedences a ≺ b with b ∈ T . Precedences internal to P ′ are satisfied since
these insertions do not modify the ordering of cities of P ′. By hypothesis no
precedence is defined from T to P ′. Finally the obtained permutation has the
same length as the initial solution and satisfies the partial order on P . �
Corollary 3. In particular, this dominance rule can be applied for any leftmost
or rightmost city of P (any singleton being totally ordered by ≺). It means that
any centrifugal connex part of the Hasse Diagram (that is made of precedences
a ≺ b with b farther from 0 than a) can be removed from P without affecting the
value of the optimal solution.

Corollary 4. PC-Line-TSP is fixed parameter tractable when parameterized by
m.

Proof. At least n −m cities do not appear in the Hasse diagram, and thus can
be removed from P without affecting the value of the optimal solution (provided
that two extreme cities are kept). Consequently this reduced problem has a size
limited to m+ 2. �

3.4 Examples

As mentioned above the worst case complexity of our dynamic programming
algorithm is the same as the one of a complete scan (2n). Before demonstrating
the practical gains of dynamic programming in the next section, we exhibit below
two structures for which the complexity of the dynamic program is much better.

In Figure 6, a complete scan has complexity O(2n) (one binary choice per
layer), whereas dynamic programming has complexity O(4n) (4 states per layer).
In Figure 7 cities are distributed around a central starting city with no prece-
dence between them, then the dynamic program explores n2 states while com-
plete scan remains exponential (2n). In the latter case, the use of the dominance
rule of corollary 3 reduces the number of states to 2 (all cities but two can be
removed).

Dynamic Programming for PC-LineTSP 11

Fig. 6. Special partial orders(1)

4 Computational Results and Conclusion

4.1 Problem Instances

For generating an instance with n cities and k distinct abscissae, we start with
building a partial order on [1,n]. For each pair (i, j) with i < j, a precedence
i ≺ j is generated with probability p. Three remarks can be made on this partial
order:

– It is a partial order because the generated directed graph contains no cycle
(by construction all arcs are oriented toward growing integers).

– Several other Directed Acyclic Graph would represent the same partial order.
We can define the density of the partial order as the number of arcs included
in the transitive closure of this graph divided by the number of arcs in the
total order (n(n− 1)/2). A total order has a density of 100%.

– this simple method does not ensure that the generated partial orders are
uniformly distributed among the set of all possible partial order. However
our goal here is not to extract statistical properties but merely to generate a
set of instances for comparing our algorithms. For references on the uniform
generation of partial orders see [14] and [2].

Once this partial order is generated, k distinct abscissae are randomly drawn in
[0,100]. Cities receive random abscissae from this set.

We generated 44 random instances of the PC-Line-TSP, with a number of
cities (cities) from 100 to 450, a density from 5% to 85% (instances with a
density of 100% were discarded) and a number of distinct abscissae from 23 to
99. We also generated 20 instances with 100 to 450 cities on 3 distinct abscissae,
the first NP-Complete value (see section 1.3): any of our algorithms could solve
any of these 3-abscissae instances in less than one second.

12 T. Benoist, A. Jeanjean, and V. Jost

Fig. 7. Special partial orders (2)

4.2 Results

For each instance we compared 4 algorithms:

1. Our complete algorithm with bound LB1 (bound by section defined in sec-
tion 1), with our reduction algorithm enabled (corollary 3), and using heuris-
tic NearestNeighbor.

2. The same algorithm as 1 using heuristic A�
3. The same algorithm as 1 with bound LB0

4. The same algorithm as 1 without our reduction algorithm

Table 1 summarizes average results obtains with these four algorithms with a
time limit set to 600 seconds. Our reference algorithm found the optimal solution
of 36 of the 44 instances (with both heuristics). Disabling the reduction algorithm
leads to a score of 33/44 while using bound LB0 instead of LB1 we obtain only
27/44. In terms of completion time our second algorithm (with heuristic A�)
obtains the best results, with an average time of 113 seconds vs 129 seconds
with heuristic NearestNeighbor. The impact of this heuristic is more significant
when comparing the time to obtain the best solution (when both completed the
search in the allocated time): with A�, the time to obtain the best solution is
divided by 3 on average: 31 seconds against 100 seconds.

Table 2 reports the results obtained by each algorithm on the 8 instances
that could not be solved within the allocated 600 seconds. Our second algorithm
(with A� heuristic) always obtains the best solution. Consequently all gaps in this
table are given with respect to the results of this best algorithm. The rightmost
column gives the value of our bound by sections LB1 and the corresponding
optimality gap.

As shown in table 3, the density of the partial order plays a important role
in the hardness of an instance. Looking at results of algorithm 3 we see that the
higher the density the easier the instance, with a number of proven optimum

Dynamic Programming for PC-LineTSP 13

Table 1. Average results on the 44 PC-Line-TSP instances (time limited to 600 sec-
onds)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

Number of proven optimum 36/44 36/44 27/44 33/44
Average time to complete 129s 113s 239s 153s

Average time to obtain best solution* 100s 31s - -
(*)on the 36 instances solved by 1 and 2

Table 2. Results on the 8 unsolved instances

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Lower Bound

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1 LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

Pb200 761 761 761 761 619 (-19%)
Pb350 1904 (+3.0%) 1848 2036 (+10.2%) 2130 (+15.3%) 1563 (-15%)
Pb400A 4230 (+1.4%) 4170 4236 (+1.6%) 5118 (+22.2%) 3963 (-5%)
Pb400B 4500 (+0.1%) 4498 4500 (+0.1%) 4548 (+1.1%) 4268 (-5%)
Pb400C 3193 (+1.9%) 3133 3583 (+14.4%) 3889 (+24.1%) 2946 (-6%)
Pb400D 2345 (+5.0%) 2233 2477 (+10.9%) 2739 (+22.7%) 2171 (-3%)
Pb450A 3098 (+3.7%) 2988 3156 (+5.6%) 3688 (+23.4%) 2723 (-9%)
Pb450B 3154 (+20.3%) 2876 3460 (+9.7%) 3386 (+17.7%) 2653 (-8%)

Average gaps +7.9% +3.1% +15.9% -9%

increasing from 5 to 8. Indeed when the partial order is denser, the number of
feasible permutations is smaller. The extreme case is when the density is 100%
and only one permutation is allowed. Comparing algorithm 1 and 3 we see that
using lower bound LB1 pays off on all range of densities. As for the reduction
algorithm its impact is higher on smaller densities, because sparse partial orders
are more likely to contain centrifugal connex parts. Concerning the number of
abscissae, we noticed that the number of distinct abscissae can increase the
hardness of the problem or at least the complexity of our algorithms. The median
number of abscissae is 60 is our benchmark. Our best algorithm (number 2)
solved instances with less than 60 abscissae in 90 seconds on average (proving
21 optimum values out of 22) while instances with more than 60 abscissae are
solved in 246 seconds on average (with 15 proven optimum out of 22).

Table 3. Impact of the density of the partial order (time to complete in seconds and
number of proven optimum in parenthesis)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

First quartile [5% to 20%] 154s (10/11) 127s (10/11) 368s (5/11) 259s (7/11)
Second quartile [20% to 48%] 245s (7/11) 198s (7/11) 344s (6/11) 277s (7/11)
Third quartile [48% to 73%] 186s (10/11) 180s (10/11) 331s (8/11) 197s (10/11)
Fourth quartile [73% to 85%] 164s (9/11) 162s (9/11) 347s (8/11) 161s (9/11)

14 T. Benoist, A. Jeanjean, and V. Jost

4.3 Conclusion

Our call-based dynamic program, manages to solve to optimality instances with
up to 450 cities. Examining the results we see that our lower bound LB1, based
on the splitting of the line by sections, makes possible the resolution of dense and
large instances. On the other end, our domination rule dramatically improves
performance on sparse instances. Finally, thanks to the call-based implementa-
tion, the algorithm can find good solutions, even for instances whose optimum
could not be found within 600 seconds. In this context founding an A� heuristic
on our lower bound allows finding better solutions faster.

References

1. de la Banda, M.G., Stuckey, P.J.: Dynamic programming to minimize the maximum
number of open stacks. INFORMS Journal on Computing 19(4), 607–617 (2007)

2. Brightwell, G.: Models of random partial orders, pp. 53–84. Cambridge University
Press (1993)

3. Charikar, M., Motwani, R., Raghavan, P., Silverstein, C.: Constrained tsp and low-
power computing. In: Dehne, F., Rau-Chaplin, A., Sack, J.-R., Tamassia, R. (eds.)
WADS 1997. LNCS, vol. 1272, pp. 104–115. Springer, Heidelberg (1997)

4. Cutler, M.: Efficient special case algorithms for the n-line planar traveling salesman
problem. Networks 10(3), 183–195 (1980)

5. Deineko, V.G., van Dal, R., Rote, G.: The convex-hull-and-line traveling salesman
problem: A solvable case. Information Processing Letters 51(3), 141–148 (1994)

6. Deineko, V.G., Woeginger, G.J.: The convex-hull-and-k-line travelling salesman
problem. Inf. Process. Lett. 59(6), 295–301 (1996)

7. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
In: Proceedings of the 1961 16th ACM National Meeting, pp. 71.201–71.204. ACM,
New York (1961)

8. Jeanjean, A.: Resource scheduling optimization in mass transportation problems.
In: 12th International Conference on Project Management and Scheduling, PMS
2010 (2010)

9. Jeanjean, A.: Recherche locale pour l’optimisation en variables mixtes:
Méthodologie et applications industrielles. Ph.D. thesis, Laboratoire
d’informatique de Polytechnique (2011)

10. Johnson, D.S., Mcgeoch, L.A.: The Traveling Salesman Problem: A Case Study in
Local Optimization. John Wiley and Sons, Chichester (1997)

11. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics
for the traveling salesman problem. 6(3), 563–581 (1977)

12. Rote, G.: The n-line traveling salesman problem. Networks 22, 91–108 (1991)
13. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with

time windows. Networks 22, 263–282 (1992)
14. Gehrlein, V.W.: On methods for generating random partial orders. Operations

Research Letters 5(6), 285–291 (1986)

	Call-Based Dynamic Programming for thePrecedence Constrained Line Traveling Salesman
	1 Introduction
	1.1 Problem Definition and Notations
	1.2 Properties
	1.3 Complexity

	2 Lower Bounds
	3 Exact Algorithm
	3.1 Dynamic Programming
	3.2 Heuristics
	3.3 Dominance Rules
	3.4 Examples

	4 Computational Results and Conclusion
	4.1 Problem Instances
	4.2 Results
	4.3 Conclusion

	References

