Skip to main content

Astrochronology of the Valanginian Stage from GSSP Candidates and Hypostratotype

  • Conference paper
  • First Online:
STRATI 2013

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 131 Accesses

Abstract

The Valanginian Stage currently displays no radiometric age, which severely hampers palaeoceanographic reconstructions for this time interval. An astrochronology of the Valanginian Stage using the stable 405-kyr eccentricity cycle was performed on biostratigraphically well-calibrated standard sections from the Vocontian Basin (southeastern France). High-resolution gamma-ray spectrometry signals were obtained from orbitally driven marl–limestone alternations from five sections in the basin, and they display the same long-term trends. The spectral analyses present the pervasive record of the 405-kyr eccentricity cycle together with precession, obliquity, and 2.4-Myr eccentricity. Based on the identification of the 405-kyr eccentricity cycle, the duration of the Valanginian Stage is assessed at 5.08 Myr. Since the Weissert Event appears to be ~3 Myr older than the onset of the Paraná–Etendeka Large Igneous Province activity, a link between these events is unlikely. We therefore propose, following Gröcke et al. (2005) and Westermann et al. (2010), that continental organic carbon storage and carbonate platform demise are responsible for the onset of the δ13C positive excursion. In addition, a stronger obliquity control appears in the O. (O.) nicklesi and C. furcillata subzones. This may be linked to the limited production of polar ice suggested for this time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Urreta, M. B., Pazos, P. J., Lazo, D. G., Fanning, C. M., & Litvak, V. D. (2008). First U-Pb SHRIMP age of the hauterivian stage, Neuquén Basin, Argentina. Journal of South American Earth Science,26(1), 91–99.

    Article  Google Scholar 

  • Cotillon, P. (1987). Bed-scale cyclicity of pelagic cretaceous successions as a result of world-wide control. Marine Geology,78(1–2), 109–123.

    Article  Google Scholar 

  • Erba, E., Bartolini, A., & Larson, R. L. (2004). Valanginian weissert oceanic anoxic event. Geology,32(2), 149–152.

    Article  Google Scholar 

  • Giraud, F. Beaufort, L. Cotillon, P. (1995). Periodicities of carbonate cycles in the valanginian of the vocontian trough: A strong obliquity control. In M. R. House, A. S. Gale (Eds.), Orbital forcing time scales and cyclostratigraphy (Vol. 85) pp 143–164. London: Geology Society Special Publication.

    Article  Google Scholar 

  • Gréselle, B. (2007). Impact des variations paléoclimatiques sur la sédimentation carbonatée au valanginien (PhD Thèse, Université Claude Bernard Lyon 1. 2007) p.337 (unpublished).

    Google Scholar 

  • Gréselle, B., & Pittet, B. (2010). Sea-level reconstructions from the peri-vocontian zone (south-east France) point to valanginian glacio-eustasy. Sedimentology,57(7), 1640–1684.

    Article  Google Scholar 

  • Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J., & Ruffell, A. H. (2005). The upper valanginian (early cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters,240(2), 495–509.

    Article  Google Scholar 

  • Janasi, V. A., de Freitas, V. A., & Heaman, L. H. (2011). The onset of flood basalt volcanism, northern parana basin, Brazil: A precise U-Pb baddeleyite/zircon age for a chapeco-type dacite. Earth and Planetary Science Letters,302(1–2), 147–153.

    Article  Google Scholar 

  • Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., & Pancost, R. D. (2011). High sea-surface temperatures during the early cretaceous epoch. Nature Geoscience,4, 169–172.

    Article  Google Scholar 

  • Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W., & Bralower, T. J. (2005). Jurassic-cretaceous boundary age and mid-ocean-ridge-type mantle source for shatsky rise. Geology,33(3), 185–188.

    Article  Google Scholar 

  • McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirwall, M. F., & van de Schootbrugge, B. (2007). Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The early cretaceous (berriasian, valanginian, hauterivian). Palaeogeography Palaeoecology,248(3–4), 391–410.

    Article  Google Scholar 

  • Price, G. D., & Nunn, E. V. (2010). Valanginian isotope variation in glendonites and belemnites from Arctic svalbard: Transient glacial temperatures during the cretaceous greenhouse. Geology,38(3), 251–254.

    Article  Google Scholar 

  • Reboulet, S., & Atrops, F. (1995). Rôle du climat sur les migrations et la composition des peuplements d’ammonites du Valanginien supérieur du bassin vocontien (S-E de la France). Geobios, Mémoire spécial,18, 357–365.

    Article  Google Scholar 

  • Reboulet, S., Rawson, P. F., Moreno-Bedmar, J. A., et al. (2011). Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010). Cretaceous Research,32(6), 786–793.

    Article  Google Scholar 

  • Sprenger, A., & Ten Kate, W. G. (1993). Orbital forcing of calcilutite–marl cycles in southeast Spain and an estimate for the duration of the berriasian stage. Geological Society of America Bulletin,105(6), 807–818.

    Article  Google Scholar 

  • Sprovieri, S., Coccioni, R., Lirer, F., Pelosi, N., & Lozar, F. (2006). Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography,21(4), PA4212.

    Google Scholar 

  • Walter, B. (1991). Changement de faunes de bryozoaires dans le Valanginien supérieur des Alpes-de-Haute-Provence. Parallélisme avec la crise observée dans le Jura à la même époque. Cretaceous Research,12(6), 597–606.

    Article  Google Scholar 

  • Wan, X., Scott, R., Chen, W., Gao, L., & Zhang, Y. (2011). Early cretaceous stratigraphy and SHRIMP U-Pb age constrain the valanginian-hauterivian boundary in southern tibet. Lethaia,44(2), 231–244.

    Article  Google Scholar 

  • Westermann, S., Föllmi, K. B., Adatte, T., Matera, V., Schnyder, J., Fleitmann, D., et al. (2010). The Valanginian δ13C excursion may not be an expression of a global oceanic anoxic event. Earth and Planetary Science Letters,290(1–2), 118–131.

    Article  Google Scholar 

  • Wortmann, U. G., & Weissert, H. (2000). Tying platform drowning to perturbations of the global carbon cycle with a δ13COrg-curve from the Valanginian of DSDP Site 416. Terra Nova,12(6), 289–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez, M., Deconinck, JF., Pellenard, P., Reboulet, S., Riquier, L. (2014). Astrochronology of the Valanginian Stage from GSSP Candidates and Hypostratotype. In: Rocha, R., Pais, J., Kullberg, J., Finney, S. (eds) STRATI 2013. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_42

Download citation

Publish with us

Policies and ethics