Skip to main content

Bioactivity and Applications of Polysaccharides from Marine Microalgae

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

Marine microorganisms have been under research for the last decades, as sources of different biocompounds, each with various applications. Polysaccharides (PSs) are among these chemicals being produced and released by marine microalgae. These are very heterogeneous, including cyanobacteria and eukaryotic microalgae from several divisions/phyla, each of which with different characteristics. The PSs, sulfated or not, that they produce have already proved to be promising agents in various fields, such as food, feed, pharmaceutical, and biomedical. They can also be applied in wastewater and/or soil treatment and in some engineering areas, as naval engineering.

After a brief introduction on the general types of biopolymers produced by marine microalgae and cyanobacteria, this chapter starts by presenting the species of these microorganisms and the types of PSs they produce, as well as the respective chemical composition; goes into the production of PSs and the effect of specific compounds; and focuses on the physicochemical properties of these PSs and their composition and structure, approaching the rheological properties relevant for their functions and behavior. The bioactivity of PSs and their applications are, next, presented, including therapeutic applications based on their antiviral and antibacterial activities, antioxidant properties, anti-inflammatory and immunomodulatory characteristics, antitumoral activity, and antilipidemic and antiglycemic properties, among others. The potential use of PSs from marine microalgae as it is or incorporated in health foods is also considered. The mechanisms behind their antiviral and antibacterial activities are explained. Toxicological and safety issues are also disclosed, and there is a brief mention of the bioavailability of PSs from microalgae. The chapter ends by listing some preclinical studies with this type of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

arab:

Arabinose

CaSp:

Calcium spirulan

CB:

Cyanobacterium(a)

EC50 :

The molar concentration of a drug that produces 50 % of the maximum possible response for that drug

ED50 :

In vitro or in vivo dose of drug that produces 50 % of its maximum response or effect

fru:

Fructose

fuc:

Fucose

GAG:

Glycosaminoglycan

gal:

Galactose

galAc:

Galacturonic acid

glcAc:

Glucuronic acid

glc:

Glucose

IC50 :

The molar concentration of a drug which produces 50 % of its maximum possible inhibition

ID50 :

In vitro or in vivo dose of a drug that causes 50 % of the maximum possible inhibition for that drug

man:

Mannose

MW:

Molecular weight

NaSp:

Sodium spirulan

NO:

Nitric oxide

PS:

Polysaccharide

rham:

Rhamnose

sEPS:

Sulfated exopolysaccharide

sPS:

Sulfated polysaccharide

xyl:

xylose

References

  • Allard B, Casadeval E (1990) Carbohydrate composition and characterization of sugars from the green alga Botryococcus braunii. Phytochemistry 29(6):1875–1878

    CAS  Google Scholar 

  • Allard B, Guillot JP, Casadeval E (1987) The production of extracellular polysaccharides by fresh-water microalgae. Investigation of the polysaccharide components. In: Grassi G, Delmon B, Molle JF, Zibetta H (eds) Biomass for energy and industry. Elsevier Applied Science, London, pp 603–607

    Google Scholar 

  • Amara A, Steinbüchel A (2013) New medium for pharmaceutical grade Arthrospira. Int J Bacteriol 2013:9 p, Article ID 203432. doi:10.1155/2013/203432

    Google Scholar 

  • Arad S(M) (1988) Production of sulphated polysaccharides from red unicellular algae. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 65–87

    Google Scholar 

  • Arad S(M) (1999) Polysaccharides of red microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 282–291

    Google Scholar 

  • Arad S(M), Atar D (2007) Viscosupplementation with algal polysaccharides in the treatment of arthritis. Il. Patent WO/2007/066340

    Google Scholar 

  • Arad S(M), Weinstein J (2003) Novel lubricants from red microalgae: interplay between genes and products. J Biomed (Israel) 1:32–37

    Google Scholar 

  • Arad S(M), Adda M, Cohen E (1985) The potential of production of sulphated polysaccharides from Porphyridium. Plant Soil 89:117–127

    CAS  Google Scholar 

  • Arad S(M), Lerental YB, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148

    CAS  Google Scholar 

  • Arad (M) S, Keristovsky G, Simon B, Barak Z, Geresh S (1993) Biodegradation of the sulphated polysaccharide of Porphyridium sp. by soil bacteria. Phytochemistry 32:287–290

    CAS  Google Scholar 

  • Arad S(M), Rapoport L, Moshkovich A, van Moppes D, Karpasan M, Golan R, Golan Y (2006) Superior biolubricant from a species of red microalga. Langmuir 2:7313–7317

    Google Scholar 

  • Archibald PJ, Fenn MD, Roy AB (1981) 13C NMR studies of d-glucose and d-galactose monosulphates. Carbohydr Res 93:177–190

    Google Scholar 

  • Ascencio F, Fransson LA, Wadström T (1993) Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparin sulphate. J Med Microbiol 38:240–244

    CAS  Google Scholar 

  • Badel S, Callet F, Laroche C, Gardarin C, Petit E, El Alaoui H, Bernardi T, Michaud P (2011a) A new tool to detect high viscous exopolymers from microalgae. J Ind Microbiol Biotechnol 38:319–326

    CAS  Google Scholar 

  • Badel S, Laroche C, Gardarin C, Petit E, Bernardi T, Michaud P (2011b) A new method to screen polysaccharide cleavage enzymes. Enzyme Microb Technol 48:248–252

    CAS  Google Scholar 

  • Bae SY, Yim JH, Lee HK, Pyo S (2006) Activation of murine peritoneal macrophages by sulphated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-kappa Β and JNK pathway. Int Immunopharmacol 6:473–484

    CAS  Google Scholar 

  • Baird IM, Waltersa RL, Daviesa PS, Hilla MJ, Drasara BS, Southgate DAT (1977) The effects of two dietary fiber supplements on gastrointestinal transit, stool weight and frequency, and bacterial flora, and fecal bile acids in normal subjects. Metabolism 26(2):117–128

    CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    CAS  Google Scholar 

  • Barrow C, Shahidi F (2008) Marine nutraceuticals and functional foods. CRC Press/Taylor & Francis Group, Boca Raton, USA

    Google Scholar 

  • Basedow AM, Elber KH, Feigenbutz W (1980) Polymer-solvent interactions: dextrans in water and DMSO. Die Makromolekulare Chemie 181:1071–1080

    CAS  Google Scholar 

  • Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrica. Plant Physiol 80:698–701

    CAS  Google Scholar 

  • Bernal P, Llamas MA (2012) Promising biotechnological applications of antibiofilm exopolysaccharides. Microb Biotechnol 5(6):670–673

    Google Scholar 

  • Bleicher P, Mackin W (1995) Betafectin PGG-glucan: a novel carbohydrate immunomodulator with anti-infective properties. J Biotechnol Healthc 2:207–222

    Google Scholar 

  • Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2(7):671–680

    CAS  Google Scholar 

  • Burgaleta C, Territo MC, Quan SG, Golde DW (1978) Glucan-activated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc 23:195–204

    CAS  Google Scholar 

  • Challouf R, Trabelsi L, Dhieb RB, El Abed O, Yahia A, Ghozzi K, Ammar JB, Omran H, Ouada HB (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54(4):831–838

    CAS  Google Scholar 

  • Chen H, Zhang M, Qu Z, Xie B (2008) Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chem 106:559–563

    CAS  Google Scholar 

  • Chen B, You B, Huang J, Yu Y, Chen W (2010) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol 26:833–840

    CAS  Google Scholar 

  • Chen C-S, Anaya JM, Zhang S, Spurgin J, Chuang C-Y, Xu C, Miao A-J, Chen EY-T, Schwehr KA, Jiang Y, Quigg A, Santschi PH, Chin W-C (2011) Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS ONE 6(7):1–7 (open access e21865)

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism (algae, single-cell protein). Microbiol Rev 47(4):551–578

    CAS  Google Scholar 

  • Clowes AW, Clowes MM (1987) Regulation of smooth muscle proliferation by heparin in vitro and in vivo. Int Angiol 6:45–51

    CAS  Google Scholar 

  • Cohen SM, Ito N (2002) A critical review of the toxicological effects of carrageenan and processed Eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 32(5):413–444

    CAS  Google Scholar 

  • Collins PM, Munasinghe VRN (1987) In: Collins PM (ed) Carbohydrates. Chapman and Hall, London, p 719

    Google Scholar 

  • Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol J 8(1):1–16

    Google Scholar 

  • Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulphated seaweed polysaccharides as antiviral agents. Curr Med Chem 11(18):2399–2419

    CAS  Google Scholar 

  • De Philippis R, Sili C, Tassinato G, Vincenzini M, Materassi R (1991) Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour Technol 38:101–104

    Google Scholar 

  • De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394

    Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281

    Google Scholar 

  • Deng R, Chow T-J (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovasc Ther 28:e33–e45

    CAS  Google Scholar 

  • Dubinsky O, Barak Z, Geresh S, Arad S(M) (1990) Composition of the cell-wall polysaccharide of the unicellular red alga Rhodella reticulata at two phases of growth. In: Advances in algal biotechnology. Tiberias, p 17

    Google Scholar 

  • Dubinsky O, Simon B, Karamanos Y, Geresh S, Barak Z, Arad S(M) (1992) Composition of the cell wall polysaccharide produced by the unicellular red alga Rhodella reticulata. Plant Physiol and Biochem 30(4):409–414

    CAS  Google Scholar 

  • Dvir I, Maislos M, Arad S(M) (1995) Feeding rodents with red microalgae. In: Cherbut C, Barry JL, Lairon D, Durand M (eds) Dietary fiber, mechanisms of action in human physiology and metabolism. John Libbey Eurotext, Paris, pp 86–91

    Google Scholar 

  • Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark AH, Madar Z, Arad S(M) (2000) Soluble polysaccharide of red microalga Porphyridium sp. alters intestinal morphology and reduces serum cholesterol in rats. Br J Nutr 84:469–476

    CAS  Google Scholar 

  • Dvir I, Stark AH, Chayoth R, Madar Z, Arad S(M) (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156–167

    CAS  Google Scholar 

  • Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. Mauro Vigani, Claudia Parisi, Emilio Rodríguez Cerezo (eds) Joint Research Centre Scientific and Policy Reports, European Commission Brighton, UK

    Google Scholar 

  • Esko J, Sharon N (2009) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Chapter 34

    Google Scholar 

  • Eteshola E, Karpasas M, Arad S(M), Gottlieb M (1998) Red microalga exopolysaccharides: 2. Study of the rheology, morphology and thermal gelation of aqueous preparations. Acta Polym 49:549–556

    CAS  Google Scholar 

  • Evans LV, Callow ME, Percival E, Fareed VS (1974) Studies on the synthesis and composition of extracellular mucilage in the unicellular red alga Rhodella. J Cell Sci 16:1–21

    CAS  Google Scholar 

  • Fabregas J, García D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of viral haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res 44:67–73

    CAS  Google Scholar 

  • Fareed VS, Percival E (1977) The presence of rhamnose and 3-O-methylxylose in the extracellular mucilage from the red alga Rhodella maculata. Carbohydr Res 53:276–277

    CAS  Google Scholar 

  • Fernandes HL, Tomé MM, Lupi FM, Fialho AM, Sá-Correia I, Novais JM (1989) Biosynthesis of high concentrations of na exopolysaccharide during the cultivation of the microalga Botryococcus braunii. Biotechnol Lett 11(6):433–436

    CAS  Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190(2):235–248

    Google Scholar 

  • Ford CW, Percival E (1965a) The carbohydrates of Phaeodactylum tricornutum. Part I. Preliminary examination of the organism, and characterization of low molecular weight material and of a glucan. J Chem Soc 1298:7035–7041

    Google Scholar 

  • Ford CW, Percival E (1965b) The carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan. J Chem Soc 1299:7042–7046

    Google Scholar 

  • Franco JM, Raymundo A, Sousa I, Gallegos C (1998) Influence of processing variables on the rheological and textural properties of lupin protein-stabilized emulsions. J Agric Food Chem 46:3109–3115

    CAS  Google Scholar 

  • Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482

    CAS  Google Scholar 

  • Garcia D, Morales E, Dominguez A, Fábregas J (1996) Productividad mixotrófica del exopolisacárido sulfatado com la microalga marina Porphyridium cruentum. Communicaciones del III Congreso Ibérico de Biotecnología – Biotec’96. Universidad de Valladolid (eds), pp 591–592

    Google Scholar 

  • Gardeva E, Toshkova R, Minkova K, Gigova L (2009) Cancer protective action of polysaccharide derived from microalga Porphyridium cruentum-a biological background. Biotechnol Biotechnol Equip 23:783–787

    Google Scholar 

  • Gasljevic K, Hall K, Chapman D, Matthys EF (2008) Drag-reducing polysaccharides from marine microalgae: species productivity and drag reduction effectiveness. J Appl Phycol 20:299–310

    CAS  Google Scholar 

  • Geresh S, Arad S(M) (1991) The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol 38:195–201

    CAS  Google Scholar 

  • Geresh S, Dubinsky O, Arad S(M), Christian D, Glaser R (1990) Structure of 3-O-(α-d-glucopyranosyluronic acid)-l-galactopyranose, an aldobiuronic acid isolated from the polysaccharides of various unicellular red algae. Carbohydr Res 208:301–305

    CAS  Google Scholar 

  • Geresh S, Lupescu N, Arad S(M) (1992) Fractionation and partial characterization of the sulfated polysaccharide of the red alga Porphyridium sp. Phytochemistry 31(12):4181–4186

    CAS  Google Scholar 

  • Geresh S, Dawadi RP, Arad S(M) (2000) Chemical modifications of biopolymers: quaternization of the extracellular polysaccharide of the red microalga Porphyridium sp. Carbohydr Polym 63:75–80

    Google Scholar 

  • Geresh S, Adin I, Yarmolinsky E, Karpasas M (2002a) Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym 50:183–189

    CAS  Google Scholar 

  • Geresh S, Mamontov A, Weinstein J (2002b) Sulfation of extracellular polysaccharides of red microalga: preparation, characterization, properties. J Biochem Biophys Methods 50:179–187

    CAS  Google Scholar 

  • Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology 19:2–15

    CAS  Google Scholar 

  • Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad S(M) (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol levels and modified fatty acids composition in egg yolk. J Appl Phycol 12:325–330

    Google Scholar 

  • Ginzberg A, Korin E, Arad S(M) (2008) Effect of drying on the biological activities of a red microalga polysaccharide. Biotechnol Bioeng 99(2):411–420

    CAS  Google Scholar 

  • Gloaguen V, Ruiz G, Morvan H, Mouradi-Givernaud A, Maes E, Krausz P, Srecker G (2004) The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res 339:97–103

    CAS  Google Scholar 

  • Glore SR, van Treeck D, Knehans AW, Guild M (1994) Soluble fiber and serum lipids: a literature review. J Am Dietetic Assoc 94(4):425–436

    CAS  Google Scholar 

  • Gouveia L, Batista A P, Sousa I, Raymundo A, Bandarra M (2008) Microalgae in novel food products. In: Papadopoulos KN (ed) Food chemistry research developments. Nova Science Publishers Inc., New York, USA

    Google Scholar 

  • Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670

    CAS  Google Scholar 

  • Guzmán-Murillo MA, Ascencio F (2000) Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of the red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett Appl Microbiol 30:473–478

    Google Scholar 

  • Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulphated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped virus. Int J Biol Macromol 17(5):293–297

    CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Hayashi K, Osawa T, Niiya K, Sakuragawa N (1996) Heparin cofactor II-dependent antithrombin activity of calcium spirulan. Blood Coagul Fibrinolysis 7:554–560

    CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Hayashi K, Osawa T, Niiya K, Sakuragawa N (1997) Calcium spirulan as an inducer of tissue-type plasminogen activator in human fetal lung fibroblasts. Biochim Biophys Acta 1355(3):241–247

    CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Lee JB, Osawa T, Niiya K, Sakuragawa N (2000) Activation of heparin cofactor II by calcium spirulan. J Biol Chem 275:11379–11382

    CAS  Google Scholar 

  • Hayashi K, Hayashi T, Kojima IA (1996a) A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus. AIDS Res Hum Retroviruses 12:1463–1471

    CAS  Google Scholar 

  • Hayashi T, Hayashi K, Maeda M, Kojima I (1996b) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87

    CAS  Google Scholar 

  • Hernandez-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 56:279–285

    CAS  Google Scholar 

  • Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 265(2):263–271

    CAS  Google Scholar 

  • Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • Huang J, Chen B, You W (2005) Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro. Chin J Mar Drugs (Chinese) 24:18–21

    CAS  Google Scholar 

  • Huang J, Liu L, Yu Y, Lin W, Chen B, Li M (2006) Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in alloxan-induced diabetic mice. J Fujian Norm Univ (Chinese) 22:77–80

    CAS  Google Scholar 

  • Huleihel M, Ishanu V, Tal J, Arad S(M) (2001) Antiviral effect of the red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol 13:127–134

    CAS  Google Scholar 

  • Huleihel M, Ishanu V, Tal J, Arad S(M) (2002) Activity of Porphyridium sp. polysaccharide against Herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 50:189–200

    Google Scholar 

  • Hung KM, Chiu ST, Wong MH (1996) Sludge-grown algae for culturing aquatic organisms.1. Algal growth in sludge extracts. Environ Manag 20(3):361–374

    Google Scholar 

  • Kaji T, Fujiwara Y, Hamada C, Yamamoto C, Shimada S, Lee JB, Hayashi T (2002) Inhibition of cultured bovine aortic endothelial cell proliferation by sodium spirulan, a new sulphated polysaccharide isolated from Spirulina platensis. Planta Med 68:505–509

    CAS  Google Scholar 

  • Kaji T, Okabe M, Shimada S, Yamamoto C, Fujiwara Y, Lee J-B, Hayashi T (2004) Sodium spirulan as a potent inhibitor of arterial smooth muscle cell proliferation in vitro. Life Sci 74:2431–2439

    CAS  Google Scholar 

  • Kaplan D, Christiaen D, Arad S(M) (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53(12):2953–2956

    CAS  Google Scholar 

  • Kenji LK, Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68:1037–1041

    Google Scholar 

  • Kerkvliet JD (2001) Algen en zeewieren als levensmiddel: een overzicht. De Ware(n)chemicus 31:77–104

    Google Scholar 

  • Kieras JH (1972) Study of the extracellular polysaccharide of Porphyridium cruentum. PhD thesis, University of Chicago, Department of Biology

    Google Scholar 

  • Kieras JH, Chapman D (1976) Structural studies on the extracellular polysaccharide of the red alga Porphyridium cruentum. Carbohydr Res 52:169–177

    Google Scholar 

  • Kim M, Yim JH, Kim S-Y, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir Res 93:253–259

    CAS  Google Scholar 

  • Kojima M, Kasajima T, Imai Y, Kobayashi S, Dobashi M, Uemura T (1974) New Chlorella polysaccharide and its accelerating effect on the phagocytic activity of the reticuloendothelial system. Recent Adv Res 13:101–107

    CAS  Google Scholar 

  • Kroen WK, Rayburn WR (1984) Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J Phycol 20(2):253–257

    CAS  Google Scholar 

  • Laroche C, Michaud P (2007) New developments and prospective applications for β-(1,3)-glucans. Recent Pat Biotechnol 1:59–73

    CAS  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    CAS  Google Scholar 

  • Lee J-B, Hayashi T, Hayashi K, Sankawa U, Maeda M, Nemoto T, Nakanishi H (1998) Further purification and structural analysis of calcium spirulan from Spirulina platensis. J Nat Prod 61:1101–1104

    CAS  Google Scholar 

  • Lee J-B, Hayashi T, Hayashi K, Sankawa U (2000) Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod 63:136–138

    CAS  Google Scholar 

  • Leiro JM, Castro R, Arranz JÁ, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888

    CAS  Google Scholar 

  • Li P, Liu Z, Xu R (2001) Chemical characterization of the released polysaccharides from the cyanobacterium Aphanothece halophytica GR02. J Appl Phycol 13:71–77

    Google Scholar 

  • Li L-Y, Li L-Q, Guo C-H (2010) Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J Med Plants Res 4(21):2194–2198

    CAS  Google Scholar 

  • Liu Y, Wang W, Zhang M, Xing P, Yang Z (2010) PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem Syst Ecol 38:292–299

    CAS  Google Scholar 

  • Loing E, Briatte S, Vayssier C, Beaulieu M, Dionne P, Richert L, Moppert X (2011) Cosmetic compositions comprising exopolysaccharides derived from microbial mats, and use thereof US 20110150795 A1

    Google Scholar 

  • Lupescu N, Arad S(M), Geresh S, Bernstein MA, Glaser R (1991) Structure of some sulfated sugars isolated after acid hydrolysis of the extracellular polysaccharide of Porphyridium sp., a unicellular red alga. Carbohydr Res 210:349–352

    CAS  Google Scholar 

  • Lupi FM, Fernandes HML, Sá-Correia I, Novais JM (1991) Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococcus braunii Kütz. UC 58. J Appl Phycol 3:35–42

    CAS  Google Scholar 

  • Marceliano MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, Dordrecht

    Google Scholar 

  • Marlett J (2001) Dietary fibre and cardiovascular disease. In: Cho SS, Dreher MD (eds) Handbook of dietary fibers. Marcel Dekker, New York, pp 17–30

    Google Scholar 

  • Martinez MJA, del Olmo LMB, Benito PB (2005) Antiviral activities of polysaccharides from natural sources. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 30. Elsevier B.V., London, pp 393–418

    Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101

    Google Scholar 

  • Matsui SM, Muizzudin N, Arad S(M), Marenus K (2003) Sulfated polysaccharides from red microalgae anti-inflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104:13–22

    CAS  Google Scholar 

  • Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibanez E, Senorans FJ (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367

    CAS  Google Scholar 

  • Metting B, Rayburn WR (1983) The influence of a microalgal conditioner on selected Washington soils: an empirical study. Soil Sci Soc Am J 47:682–685

    Google Scholar 

  • Michael TM, John MM, Jack P (2002) Brock microbiology of microorganisms, 10th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857

    CAS  Google Scholar 

  • Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machu L (2012) Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 66:75–145

    Google Scholar 

  • Mulloy B, Linhardt RJ (2001) Order out of complexity – protein structures that interact with heparin. Curr Opin Struct Biol 11:623–628

    CAS  Google Scholar 

  • Namikoshi M (1996) Bioactive compounds produced by cyanobacteria. J Int Microbiol Biotechnol 17:373–384

    CAS  Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58(4):187–205

    CAS  Google Scholar 

  • Nilson HW, Wagner JA (1959) Feeding test with carrageenan. Food Res 24:235–239

    CAS  Google Scholar 

  • Noffz G (2011) Novel medical products: conventional biological or ATMPs? MSc thesis, University of Bonn, Germany

    Google Scholar 

  • Nomoto K, Yokokura T, Satoh H, Mutai M (1983) Anti-tumor effect by oral administration of Chlorella extract, PCM-4 by oral admission (article in Japanese). Gan To Kagaku Zasshi 10:781–785

    CAS  Google Scholar 

  • Oakenfull D (2001) Physicochemical properties of dietary fiber: overview. In: Cho SS, Dreher MD (eds) Handbook of dietary fibers. Marcel Dekker, New York, pp 195–206

    Google Scholar 

  • Ofek L, Beachery EH, Sharon N (1978) Surface sugars recognition in bacterial adherence. Trends Biochem Sci 3:159–160

    CAS  Google Scholar 

  • Ogawa K, Yamaura M, Maruyama I (1997) Isolation and identification of 2-O-methyl-l-rhamnose and 3-O-methyl-l-rhamnose as constituents of an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem 61(3):539–540

    CAS  Google Scholar 

  • Ogawa K, Yamaura M, Ikeda Y, Kondo S (1998) New aldobiuronic acid, 3-O-α-d-glucopyranuronosyl-l-rhamnopyranose, from an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem 62(10):2030–2031

    CAS  Google Scholar 

  • Ogawa K, Ikeda Y, Kondo S (1999) A new trisaccharide, α-d-glucopyranuronosyl-(1→3)- α-l-rhamnopyranosyl-(1→2)- α-l-rhamopyranose from Chlorella vulgaris. Carbohydr Res 321:128–131

    CAS  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152

    CAS  Google Scholar 

  • Parages ML, Rico RM, Abdala-Díaz RT, Chabrillón M, Sotiroudis TG, Jiménez C (2012) Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J Appl Phycol 24(6):1537–1546

    CAS  Google Scholar 

  • Parnell JA, Reimer RA (2012) Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3:29–34

    Google Scholar 

  • Patchen ML, Lotzova E (1980) Modulation of murine hemopoiesis by glucan. Exp Hematol 8:409–422

    CAS  Google Scholar 

  • Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, Djelveh G, Michaud P (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol 145:345–350

    CAS  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnol Oceanogr 34:223–234

    Google Scholar 

  • Penna A, Berluti S, Penna N, Magnani M (1999) Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea. J Plankton Res 21(9):1681–1690

    CAS  Google Scholar 

  • Percival E, Foyle RAJ (1979) The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res 72:165–176

    CAS  Google Scholar 

  • Pereira MS, Vilela-Silva AC, Valente AP, Mourão PA (2002) A 2-sulfated,3-L-linked alpha-l-galactan is an anticoagulant polysaccharide. Carbohydr Res 337:2231–2238

    CAS  Google Scholar 

  • Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Mangard T (2011) Antibacterial activity of a sulphated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioproc Eng 16:937–945

    CAS  Google Scholar 

  • Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (2013) Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40:781–796

    CAS  Google Scholar 

  • Pletikapic G, Radic TM, Zimmermann AH, Svetlicic V, Pfannkuchen M, Maric D, Godrjan J, Zutic V (2011) AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & JC Lewin. J Mol Recognit 24:436–445

    CAS  Google Scholar 

  • Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  Google Scholar 

  • Radonic A, Thulke S, Achenbach J, Kurth A, Vreemann A, König T, Walter C, Possinger K, Nitsche A (2010) Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to Vaccinia virus. J Antivir Antiretrovir 2(4):51–55

    CAS  Google Scholar 

  • Ramus J, Robins DM (1975) The correlation of Golgi activity and polysaccharide secretion in Porphyridium. J Phycol 11:70–74

    CAS  Google Scholar 

  • Ramus J, Kenney BE, Shaughnessy EJ (1989) Drag-reducing properties of microalgal exopolymers. Biotechnol Bioeng 33:550–557

    CAS  Google Scholar 

  • Raposo MFJ, de Morais RMSC (2011) Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int J Agric Biol 13:719–724

    Google Scholar 

  • Raposo MFJ, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116(3):285–292

    CAS  Google Scholar 

  • Raposo MFJ, de Morais RMSC, de Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae, a review. Mar Drugs 11(1):233–252

    Google Scholar 

  • Raposo MFJ, de Morais AMMB, de Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63

    CAS  Google Scholar 

  • Rashid ZM, Lahaye E, Defer D, Douzenel P, Perrin B, Bourgougnon N, Sire O (2009) Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int J Biol Macromol 44:286–293

    CAS  Google Scholar 

  • Raymundo A, Franco J, Gallegos C, Empis J, Sousa I (1998) Effect of thermal denaturation of lupin protein on its emulsifying properties. Nahrung 42:220–224

    CAS  Google Scholar 

  • Raymundo A, Gouveia L, Batista AP, Empis J, Sousa I (2005) Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Res Int 38:961–965

    CAS  Google Scholar 

  • Rechter S, König T, Auerochs S, Thulke S, Walter H, Dörnenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Res 72(3):197–206

    CAS  Google Scholar 

  • Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36(5):972–989

    CAS  Google Scholar 

  • Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E, Ghigo J (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2:e00043–e00011. doi:10.1128/mBio.00043-11

    Google Scholar 

  • Riggi SJ, DiLuzio NR (1961) Identification of a reticuloendothelial stimulating agent in zymosan. Am J Physiol 200:297–300

    CAS  Google Scholar 

  • Rincé Y, Lebeau T, Robert JM (1999) Artificial cell-immobilization: a model simulating immobilization in natural environments? J Appl Phycol 11:263–272

    Google Scholar 

  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fisher AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    CAS  Google Scholar 

  • Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60C:366–374

    Google Scholar 

  • Sharma NK, Rai AK (2008) Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol Environ Saf 69(1):158–162

    CAS  Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40(3):207–217

    CAS  Google Scholar 

  • Shopen-Katz O, Ling E, Himelfarb Y, Lamprecht SA, Arad SM, Shany S (2000) The effect of Porphyridium sp. biomass and of its polysaccharide in prevention and inhibition of human colon cancer. Proceedings of the Int Conference in the Era of Biotechnology. Beer-Sheva, Israel, p 32

    Google Scholar 

  • Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2(4):1–12

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    CAS  Google Scholar 

  • Staats N, de Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169

    Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toiletries 120:99–106

    Google Scholar 

  • Subramanian BS, Yan S, Tyagi RD, Surampalli RY (2010) Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification EPS characterization and performance for sludge settling and dewatering. Water Res 44:2253–2266

    Google Scholar 

  • Sun L (2010). Preparation of polysaccharides from Porphyridium cruentum and their biological activities. PhD thesis dissertation posted at Globethesis.com. http://www.globethesis.com/?t=1101360275957885 on 23 May 2010. Last assess 27 Jan

  • Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009a) Chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78:117–124

    CAS  Google Scholar 

  • Sun L, Wang C, Shi Q, Ma C (2009b) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47

    CAS  Google Scholar 

  • Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210

    CAS  Google Scholar 

  • Sutherland TF, Grant J, Amos CL (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnol Oceanogr 43:65–72

    CAS  Google Scholar 

  • Talyshinsky MM, Souprun YY, Huleihel MM (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2(8):1–7

    Google Scholar 

  • Tannin-Spitz T, Bergman M, van Moppes D, Grossman S, Arad S(M) (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222

    CAS  Google Scholar 

  • Tao Y, Zhang L, Yan F, Wu X (2007) Chain conformation of water insoluble hyperbranched polysaccharide from fungus. Biomacromolecules 8:2321–2328

    CAS  Google Scholar 

  • Tiberg E, Einarsson R (1989) Variability of allergenicity in 8 strains of the green algal genus chlorella. Intl Arch Allergy Appl Immunol 90(3):301–306

    CAS  Google Scholar 

  • Trabelsi L, M’sakni NH, Ouada HB, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31

    CAS  Google Scholar 

  • Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13(4):523–533

    CAS  Google Scholar 

  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103:12558–12563

    CAS  Google Scholar 

  • van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12(6):662–678

    Google Scholar 

  • Vieira VV, Morais RMSC (2008) Composições constituídas por polissacarídeos com actividade anti-viral e anti-adesão bacteriana, respectivas formulações, processo de elaboração das mesmas e suas utilizações. Portugal Patent 38122.08

    Google Scholar 

  • Vischer P, Buddecke E (1991) Different action of heparin and fucoidan on arterial smooth muscle cell proliferation and thrombospondin and fibronectin metabolism. Eur J Cell Biol 56:407–414

    CAS  Google Scholar 

  • Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15

    Google Scholar 

  • White RC, Barber GA (1972) An acidic polysaccharide from the cell wall of Chlorella pyrenoidosa. Biochim Biophys Acta 264(1):117–128

    Google Scholar 

  • Whiteside PA (2011) Biotechnology medicinal products: back to basics. Regul Rapporteur 8:4–5

    Google Scholar 

  • Wijesekara I, Pangestuti R, Kim S-K (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21

    CAS  Google Scholar 

  • Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511

    CAS  Google Scholar 

  • Wong MH, Hung KM, Chiu ST (1996) Sludge-grown algae for culturing aquatic organisms: part II. Sludge-grown algae as feeds for aquatic organisms. Environ Manag 20(3):375–384

    Google Scholar 

  • www.vilastic.com. A structural view of rheology. Vilastic Scientifica. www.vilastic.com/tech4.html. Accessed 03 Apr 2012

  • Xing RE, Yu HH, Liu S (2005) Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem 13(4):1387–1392

    CAS  Google Scholar 

  • Yamamoto C, Nakamura A, Shimada S, Kaji T, Lee J-B, Hayashi T (2003) Differential effects of sodium spirulan on the secretion of fibrinolytic proteins from vascular endothelial cells: enhancement of plasminogen activator activity. J Health Sci 49(5):405–409

    CAS  Google Scholar 

  • Yamamoto C, Fujiwara Y, Kaji T (2006) The biological effects of depolymerized sodium spirulan and sulfated colominic acid on vascular cells are beneficial in preventing atherosclerosis. J Health Sci 52(3):205–210

    CAS  Google Scholar 

  • Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulphated polysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25

    CAS  Google Scholar 

  • Yim JH, Son E, Pyo S, Lee HK (2005) Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo. Mar Biotechnol (NY) 7:331–338

    CAS  Google Scholar 

  • Yim JH, Kim SJ, Ahn SH, Lee HK (2007) Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresources Technol 98:361–367

    CAS  Google Scholar 

  • Zhou FG, Sun YP, Xin H, Zhang YN, Li ZE, Xu ZH (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 50:47–53

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Funds from FCT through project PEst-OE/EQB/LA0016/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Manuel Santos Costa de Morais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

de Jesus Raposo, M.F., de Morais, A.M.M.B., de Morais, R.M.S.C. (2014). Bioactivity and Applications of Polysaccharides from Marine Microalgae. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics