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Abstract. An important problem in robotics is the empirical evaluation of clas-
sification algorithms that allow a robotic system to make accurate categorical
predictions about its environment. Current algorithms are often assessed using
sample statistics that can be difficult to interpret correctly and do not always
provide a principled way of comparing competing algorithms. In this paper, we
present a probabilistic alternative based on a Bayesian framework for inferring
on balanced accuracies. Using the proposed probabilistic evaluation, it is possible
to assess the balanced accuracy’s posterior distribution of binary and multiclass
classifiers. In addition, competing classifiers can be compared based on their re-
spective posterior distributions. We illustrate the practical utility of our scheme
and its properties by reanalyzing the performance of a recently published algo-
rithm in the domain of visual action detection and on synthetic data. To facilitate
its use, we provide an open-source MATLAB implementation.

Keywords: multiclass classifiers, accuracy, balanced accuracy, probabilistic
performance.

1 Introduction

A central theme in the development of intelligent, autonomous robots has been the
challenge of decision problems. Typical examples include the critical tasks of object
detection [3,14], scene recognition [8,27], active SLAM [10,11] or loop closing [15,17].
All of these domains have seen significant progress in the development of increasingly
accurate classification algorithms.

By contrast, there has been less focus on the evaluation of the performance of such
algorithms. Assessing the performance of a given classifier is crucial as it allows us
to (i) obtain an interpretable estimate of the degree to which its results generalize to
unseen examples from the same distribution from which the existing data were drawn,
(ii) compare competing approaches, and (iii) tune the (hyper)parameters of a classifier
in light of the estimated performance in a given domain.

A common basis for evaluating the performance of a classifier is the confusion ma-
trix. It provides a summary of classification outcomes and permits the inspection of
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the number of correct and incorrect predictions in each class. However, in the absence
of an appropriate summary statistic, reporting a confusion matrix by itself is generally
insufficient and easily leads to highly subjective interpretations of performance.

Commonly used summary statistics that are based on confusion matrices include the
overall sample accuracy; the per-class, or balanced, sample accuracy; the Kappa coef-
ficient; and the Fμ-score. Other statistics include the area under the receiver-operating
characteristic (ROC) curve and the area under the precision-recall (PR) curve, although
these are typically limited to two-class (binary) classification problems (see [21] for a
generalization).

While all of the above performance metrics can be helpful in understanding the be-
haviour of a classifier, the key quantity of interest in most practical domains of ap-
plication is the generalization ability, i.e., the probability of the classifier to make a
correct prediction on an unseen example. It is tempting to try and answer this question
by considering the accuracy of a classifier alone. However, classification accuracy is a
misleading performance indicator when the data are not perfectly balanced [1,6,12,18].

A straightforward way of resolving the above limitation is to replace the accuracy
by the balanced accuracy, defined as the arithmetic mean of class-specific accuracies.
Critically, however, it is not sufficient to report the mean of class-specific sample accu-
racies. Rather, we must infer on the latent class-specfic accuracies of which the observed
sample accuracies are an instantiation. Inferring on the balanced accuracy then means,
for example, to report a point estimate as well as a measure of uncertainty about this
estimate.

This paper describes a simple Bayesian framework for assessing the performance of
classifiers. The proposed model makes it possible to compute the full posterior distribu-
tion of the balanced accuracy given the available classification outcomes. This approach
extends previous work [6, 7] by providing a generalization to multiclass classifiers. In
addition, we suggest a concrete method for comparing two balanced accuracies based
on the posterior distribution of their difference. This method allows one to rank com-
peting classifiers in a probabilistically interpretable fashion.

Using a Bayesian model for multiclass balanced accuracies offers three strengths
over previous schemes: (i) the useful properties of the balanced accuracy are general-
ized to a multiclass setting; (ii) a Bayesian perspective allows us to explicitly incorpo-
rate prior knowledge (e.g., domain-specific information or a cost function that assigns
a measure of importance to each class), account correctly for posterior uncertainty,
and easily derive other posterior inferences; (iii) the model enables cross-algorithm
comparisons that correctly account for the posterior uncertainty about each algorithm’s
performance.

The paper is structured as follows: Section 2 briefly reviews the merits of a Bayesian
approach to performance evaluation. Section 3 provides a concrete example of a deci-
sion problem from the domain of robotics, followed by a brief overview of previous ap-
proaches to performance evaluation. Section 4 develops the proposed Bayesian model
for performance evaluation in multiclass classification and a method for comparing
competing classifiers. Section 5 presents a set of experiments in order to characterize
the properties of the approach and illustrate its application. We conclude the material in
Section 6 with a brief discussion.
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2 Bayesian Inference on Classification Performance

In most situations, evaluating the performance of a classifier aims at characterizing the
classifier’s ability to predict the correct class of data that has not yet been seen. Abstract-
ing away from specific implementations, we can denote the performance of a classifier
by the variable λ ∈ [0, 1]. The two limits 0 and 1 refer to the ability of making incor-
rect or correct predictions on all future instances, while 0.5 refers to classifications at
random. Despite the advantages of a Bayesian framework, λ has mostly been evaluated
by adopting a classical, or frequentist, approach to inference.

Classical inference considers distributions over data but does not permit distributions
over parameters such as λ. As a result, it is restricted to point estimates, λ̂, and, most
commonly, 95% confidence intervals, representing the interval in which the true value
would be in 95% of cases if the experiment was repeatedly carried out an infinite num-
ber of times. A ‘test’ is then carried out by asking whether the value of a summary
statistic (i.e., a t-score), or a more extreme value, could be observed under a ‘null’ hy-
pothesis. The main advantage of point estimates, confidence intervals, and hypothesis
tests is their computational simplicity. However, their correct interpretation is prone to
errors [4].

In a Bayesian framework, inference proceeds by passing from a prior distribution,
p(λ), to a posterior distribution, p(λ|D), that is informed by the data y. Depending on
the given cost function, the posterior mean, mode, or median then replaces classical
point estimates. Posterior intervals replace confidence intervals. And Bayesian model
comparison replaces hypothesis tests. The main advantage of Bayesian inference is its
conceptual simplicity (providing a probabilistic statement about the quantity of interest
rather than providing a sampling statistic about a summary statistic) and the flexibility
with which posterior inferences can be summarized [16]. A downside is that Bayesian
inference is often computationally more complex than classical inference. In the appli-
cation considered in this paper, however, this is not an issue, since the classifier evalua-
tion is usually small-scale and carried out offline.

3 A Motivating Example

To illustrate the importance of assessing overall classification performance, we consider
the example of a service robot, designed to clean the dishes in a kitchen. A core compo-
nent of such a robot is the capability of visually classifying objects as a ‘mug’, a ‘sink’,
or a ‘bottle of wash-up liquid’. Clearly, any classification algorithm designed for this
task must be proficient at detecting all three types of object, since all are required to
complete the task. Thus, we are interested in the overall performance of the classifier
(i.e., the variable λ) rather than its performance on individual classes.

3.1 Confusion Matrices

A common way of reporting classification results, especially in a multiclass setting, is
to compile a confusion matrix, also referred to as a contingency table or accumulation
matrix. Let each element xr,c of a confusion matrix C ∈ N

l×l represent the number of
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Fig. 1. (a) Three example confusion matrices, summarizing the classification outcomes described
in Section 3. (b) Conventional performance metrics with classical error bars stemming from the
standard error of the mean. To reproduce these results, see MotivatingExample.m, available
online [9].

times a classifier predicted class r when the true class label was c. Thus, diagonal and
off-diagonal elements indicate the number of correct and incorrect predictions, respec-
tively.

Let us suppose that three competing classifiers were tested on a given dataset, result-
ing in three matrices C1, C2, and C3 (see Fig. 1). Using a graphical representation of the
matrices, one can easily obtain an intuitive sense about which classifier performed best
(C3). However, such an assessment remains vague and does not obviate the need for a
quantitative evaluation. For instance, how confident are we that classifier 2 performed
better than chance? How certain is it that classifier 3 outperformed classifier 1? Several
metrics have been proposed to address such questions. In the next part, we will review
some of these, focusing on their properties regarding the assessment of prediction ac-
curacy of a classifier.

3.2 Performance Metrics

The literature on performance metrics on the basis of confusion matrices is large and
diverse, comprising both frequent propositions of new statistics and the development
of statistical models for their estimation. Here, we briefly consider some of the most
common metrics and outline where balanced accuracies fit in.

The most common statistic for reporting the performance of a multiclass classifier
is its sample accuracy (acc), defined as the number of correct predictions across all
classes, k, divided by the number of examples, n. While conceptually simple, assess-
ing performance using the sample accuracy alone has long been known to be prone to
erroneous interpretation. This is because the accuracy does not account for the degree
of class imbalance that may be present in a given dataset [1, 6, 12, 18], which means it
can only be correctly interpreted in relation to a dataset-dependent baseline accuracy.
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An example of the misleading nature of inferences based on accuracies can be seen in
the results of the example in Fig. 1b. The plot shows that the sample accuracy of C2 is
close to that of C1, despite C2 misclassifying classes 2 and 3 most of the time.

In robotics, a common way of overcoming the above limitation is to resort to the Fμ-
score [24, p. 183], defined as the across-classes average of the Fβ-score [26]. The Fβ-
score itself, frequently used in binary classification, is given by the β-weighted average
between precision and recall. Setting β = 2, as is commonly done, yields the harmonic
mean of precision and recall. Thus, as depicted in Fig. 1b, the Fμ-score accounts for the
degree of class imbalance in the test examples. At present, however, there has been no
established convention of computing its corresponding confidence or credible intervals.

Another approach to overcoming the limitation of sample accuracies is based on the
Kappa coefficient [13], which has been one of the dominating metrics in the domain of
remote sensing. It quantifies the degree of overall agreement within a given confusion
matrix C ∈ N

l×l,

Kc =
p0 − pe
1− pe

(1)

with

p0 =
1

l

l∑

i=1

ki, pe =
1

l2

l∑

i=1

Ci+ × C+i, (2)

where ki is the number of correct predictions in class i and l is the number of classes.
Ci+ and C+i, respectively, are the row-wise and column-wise sums of row and column
i in the confusion matrix.

Like the Fμ-score, Kc accounts for the degree of class imbalance in the data. How-
ever, it can be invariant to the number of misclassifications and does not necessarily
reflect what one would intuitively consider prediction strength [25].

An alternative is the balanced accuracy (bac), defined as the average accuracy ob-
tained on all classes. In the case of a multiclass classification problem, its sample
statistic is given by

λ̂ =
1

l

l∑

i=1

ki
ni

, (3)

where ki is the number of correct predictions in class i, l is the number of classes and ni

is the number of examples in class i. The balanced accuracy is frequently used in prac-
tice and has several conceptual strengths over the conventional accuracy while main-
taining its simplicity. However, a probabilistic approach is not always being adopted
when interpreting it, despite the fact that the limits of a frequentist confidence interval,
as can be seen in classifier 3 in Fig. 1b, can easily lie outside of its [0, 1] domain. (One
possible remedy is to apply a z-transform prior to computing the interval.)

In summary, current approaches to multiclass performance evaluation face multiple
challenges: (i) assessing performance on the basis of sample statistics does not replace
principled probabilistic inference; (ii) error bars are often based on ill-justified distri-
butional assumptions, such as in the case of classical confidence intervals without a
z-transform; (iii) classification accuracy remains a popular metric even in those cases
where an imbalanced dataset leads to misleading conclusions; (iv) alternatives to the
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above, such as the use of a Bayesian framework [6, 7] have not yet been generalized to
multiclass classification problems.

4 Theory

To help address the challenges outlined above, we describe a Bayesian approach to
estimating the accuracy and balanced accuracy of a classifier in a multiclass setting.
The adoption of a Bayesian perspective has long been considered helpful in this context
(cf. [5, p. 68-74]; [24, p. 72-78]) and has in particular been described previously for
binary classifiers [6, 7], where C ∈ N

2×2. Here, we develop a generalization to the
multiclass case where C ∈ N

l×l with l ≥ 2. In order to keep our treatment self-
contained, we will begin with the binary case and then demonstrate its extension to
multiclass classification.

It is worth pointing out that the approach in this paper differs from the implementa-
tion in [6, 7] in that we suggest a feasible strategy for computing the posterior distribu-
tion of λ in a multiclass setting. Our strategy is based on the characteristic function of
the per-class posterior distribution and its Fourier transforms. This strategy is compu-
tationally more efficient than a direct extension of the previous implementation, which
would otherwise require an l-fold convolution, where l is the number of classes in the
classifier.

Another focus of the present paper is the comparison of competing algorithms based
on the posterior distribution of the difference of their respective balanced accuracies.

4.1 Problem Statement

We consider the solution to a decision problem in which each one of n i.i.d. examples
(or trials) is associated with a class label from a finite set of categories {1, . . . , l}. We
wish to assess the generalizability of the classifier. In others words, we wish to charac-
terize the classifier’s ability of predicting the correct class on future, unseen data, i.e.,
estimate the variable λ.

4.2 Solution Sketch

In a Bayesian framework, the performance of a classifier is considered a latent (unob-
servable) variable, and we use probabilities to express our uncertainty about classifica-
tion performance before and after observing actual classification outcomes. Under this
view, evaluating the performance λ of a classifier means passing from a prior distribu-
tion p(λ) to a posterior conditioned on observed data p(λ|D). The posterior encodes
the plausibility of all possible true performance values in light of the observed data,
and there are many ways in which it can be summarized, for example, in terms of the
posterior mean, mode, or a posterior interval.

To model classification performance, we code correct predictions as y = 1 and in-
correct predictions as y = 0. A classification result can then be viewed as a sequence
of outcomes y1, . . . , yn. Modelling each outcome as the i.i.d. result of a Bernoulli ex-
periment, we obtain

p(yi|λ) = Bern(yi|λ) = λyi(1− λ)1−yi , (4)
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where λ is the probability of any one trial being classified correctly. This implies that
the number of correct predictions k in a sequence of trials y1, . . . , yn follows a Binomial
distribution:

p(k|λ, n) = Bin(k|λ, n) =
(
n

k

)
λk(1− λ)n−k (5)

Finally, we express any available prior knowledge about classification performance by
placing a prior on λ. A natural choice for this is to use the conjugate prior of the Bi-
nomial distribution, i.e., the Beta density. In the absence of any preceding classification
results, we express maximal prior uncertainty (i.e., all values in the domain [0 . . . 1] of
performance λ are considered equally plausible a priori) using a uniform distribution

p(λ) = Beta(λ|a, b) = Beta(λ|1, 1). (6)

Thus, given the observed data k and n, we obtain the posterior performance as:

p(λ|k, n) = Bin(k|λ, n)× Beta(λ|1, 1)
p(k)

= Beta(λ|k + 1, n− k + 1) (7)

This posterior encodes our knowledge about λ in light of the observed classifica-
tion result. Critically, it goes beyond point estimates of performance (such as, e.g., the
sample accuracy k/n), since it reflects how uncertain we are about our estimate. For in-
stance, observing only very few classification outcomes will be correctly accounted for
by a wide posterior distribution; whereas the observation of a large additional number
of outcomes would cause the posterior to shrink to a more precise distribution.

Having described the model in general terms, we will now turn to the special cases
of posterior accuracies and balanced accuracies in a multiclass setting, as described in
the following two sections.

4.3 The Posterior Multiclass Accuracy

In what follows, we describe how to obtain the posterior distribution of the accuracy for
a multiclass setting. It should be noted that this section merely serves as a preparation of
the next section; using the accuracy to describe the performance of a classifier is often
misleading and is discouraged [1, 6, 12, 18].

In order to infer on the posterior classification accuracy of a multiclass classifier, we
can use the model described above as is. In the multiclass setting, the variable1 θ then
simply represents the probability with which an individual trial is classified correctly,
i.e., classification accuracy. In other words, the posterior distribution of the overall ac-
curacy is given by

p(θ|k, n, a, b) = Beta(θ|a+ k, b+ n− k), (8)

where a = 1 and b = 1 encode our prior ignorance about the classifier’s performance
(see [19] for a comparison of alternative priors). The key point to note here is that the

1 The variable θ represents the same as the variable λ, i.e., the performance of a classifier. We
changed its notation to prevent abuse of notation in the next section.
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availability of a full posterior distribution yields a plethora of useful ways of forming
summary statistics. For example, we could report a central 95% credible interval,

[
F−1

B(a+k,b+n−k)(
0.05
2 ); F−1

B(a+k,b+n−k)(1− 0.05
2 )

]
, (9)

where F−1
B(·)(·) is the inverse cumulative density function of the Beta distribution, eval-

uated at the desired quantile.
Alternatively, we could derive a point estimate of classification accuracy that mini-

mizes the expectation of a given loss function. For example, the optimal point estimate
under an �2-loss function is the posterior mean:

〈θ〉p(θ|k,n,a,b) =
a+ k

a+ b+ n
(10)

In contrast, the expected loss of a (0, 1)-loss function is minimized by the posterior
mode:

argmax
θ

p(θ|k, n, a, b) = k + a− 1

a+ b+ n− 2
(11)

This shows that we can reinterpret the conventional sample accuracy k/n as the
optimal estimate under a flat prior and a loss function that is L(θ, θ̂) = 0 if θ = θ̂ and
1 otherwise.

4.4 The Posterior Multiclass Balanced Accuracy

Classification accuracy, as defined above, is a misleading measure of performance when
the data are not perfectly balanced. This is because a classifier may take advantage
of an imbalanced dataset and trivially achieve a classification accuracy equal to the
fraction of the majority class, and thus potentially much higher than the 1/l baseline.
Put differently, the baseline accuracy that can always be achieved by a classifier, even
in the case of zero mutual information between data features and class labels, depends
on the degree of class imbalance; it is not always 1/l (i.e., 0.5 in the case of binary
classification).

This issue can be resolved by replacing the accuracy by the balanced accuracy, i.e.,
by the arithmetic mean of class-specific accuracies,

λ :=
1

l

l∑

i=1

θi, (12)

where θi is the (latent) accuracy of the classifier on class i. When the data are perfectly
balanced (i.e., the data contain the same number of examples from each class), the
balanced accuracy reduces to the conventional accuracy. Critically, however, its base-
line performance is always 1/l, regardless of the degree of class imbalance. Thus, if a
classifier has achieved class-specific accuracies above 1/l only by exploiting the class
imbalance, its balanced accuracy will drop to 1/l, as desired [7].

Under a Bayesian perspective, we wish to pass from a prior distribution over the
balanced accuracy to a posterior distribution in light of the observed classification out-
comes D = {(k1, n1), . . . , (kl, nl)}. We have seen in (8) how we can obtain the poste-
rior distribution of the overall accuracy. Thus, to obtain the posterior balanced accuracy,
we first apply (8) to each class in turn; we then find the conditional distribution over λ.
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Computing λ. In [6, 7], a convolution is used to compute λ for the binary case. The
direct extension of its convolution approach would require an l-fold convolution, where
l is the number of classes in the classifier. This would in turn require the numerical
computation of an l-dimensional integral, which can be both computationally complex
and numerically unstable.

An alternative is to consider the inverse Fourier transform of the products of the
characteristic functions of the individual distributions, as described next.

The probability distribution of a given random variable θ is fully specified by its
characteristic function Φθ which is given by the Fourier transform F{θ} [22, p. 145].
Thus, owing to the product property of the Fourier transform, the convolution of two
functions is identical to the product of the functions’ Fourier transforms. In the con-
text of classification, we can exploit this fact to obtain the posterior distribution of the
balanced accuracy as

p(λ|D) = F−1{Φθ̌1
× · · · × Φθ̌l

}, (13)

where Φθ̌i
is the characteristic function of θ̌i := 1

l θi, ∀i = 1 . . . l, and where F−1{·}
is the inverse Fourier transform [22, p. 272]. This step is facilitated by the fact that the
posterior distributions of all individual class-specific accuracies, p(θi|ki, ni), are Beta
densities and can be obtained using (8).

Just as in the case of the posterior accuracy, it is useful and important to obtain sum-
mary statistics, such as the mean, mode, or a credible interval. In contrast to the closed-
form expressions we saw in the previous section, analytical solutions for balanced-
accuracy statistics are not available. To address this limitation and facilitate their use,
we provide a numerical implementation in MATLAB.2

4.5 Comparing Competing Multiclass Classifiers Using Their Posterior
Performance Distribution

Given the posterior distribution of the performance of one classifier p(λ1|D), a critical
question is how this given classifier compares to a competing classifier with posterior
performance p(λ2|D) or others, e.g., p(λ3|D). This question can be answered by con-
sidering the pairwise posterior differences between the respective competing classifiers,

p (δ | D) , (14)

where δ := λ(j)−λ(i) denotes the difference between the posterior balanced accuracies
λ(i) and λ(j) of two competing classifiers (cf. the difference between proportions [20,

p. 175-176]) and D = {k(1)1 , . . . , k
(1)
l , k

(2)
1 , . . . , k

(2)
l } is the classifiers outcomes.3

Properties of δ. The domain of the random variable δ is continuous in [−1 . . .1],
Its distribution can summarized, for example, by reporting the posterior expectation. It
represents the expected algebraic distance in performance between the two classifiers.

2 The software can be downloaded from: http://mloss.org/software/view/447/
3 The dataset sizes {n(1)

1 , . . . , n
(1)
l , n

(2)
1 , . . . , n

(2)
l } have been omitted for brevity.

http://mloss.org/software/view/447/
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Computing δ. Algorithmically, we can compute the posterior density of the difference
of two balanced accuracies using a stochastic approximate inference approach. Specifi-
cally, under a Monte Carlo scheme [24, p. 154-155], we repeatedly draw samples from
p(λ(i)|D) and p(λ(j)|D) and collect the differences between each pair. This approach
will result in an approximation of p (δ | D). In practice, a high number of samples (e.g.,
5 000) is required for a suitable approximation.

A simple heuristic method for comparing competing classifiers can be done by rank-
ing them by their performance’s algebraic distance against each other. We suggest the
following simple scheme:

1. Given T competing classifiers, compute the pairwise posterior difference between
them (using eq. 14) and its posterior mean. Decide on a winning classifier for each
comparison based on the sign of the posterior mean.

2. Count the number of times each classifier wins.
3. Rank the competing classifiers according to its number of victories.

This simple scheme assumes that the classifiers are tested with the same dataset.
It also assumed that the posterior mean of δ approximates the p(λ(i) > λ(j)|D) for
every pairwise comparison, which could be an optimistic approximation. Non-heuristic
schemes of comparison are of interest and objective of future research.

5 Experiments

In this section, we present a set of experiments to compare the proposed probabilistic
evaluation to previous frequentist approaches such as sample accuracy, sample balanced
accuracy, Kappa coefficient and Fμ-score. We begin by considering the synthetic data
from the motivating example in Section 3 and conclude the section by reanalyzing an
empirical dataset from the domain of action detection.

5.1 A Bayesian Look to the Motivating Example

Using the confusion matrix of Fig. 1a as input, the posterior distribution of the bal-
anced accuracy (henceforth PDBAC) of each classifier can be computed as described in
Section 4.4. The PDBAC of each classifier is depicted in Fig. 2.

As expected, the posterior mean of the classifiers show a clear difference in per-
formance between (C2) and the others. This behavior is also exhibited by the sample
balance accuracy, the Fμ-score and the Kappa coefficient, but not for the sample accu-
racy, as discussed in Section 3. Moreover, the uncertainty associated with the posterior
mean is in the correct domain of the random variable λ for all classifiers, unlike the
(non-z-transformed) accuracies, which for C3 exhibit non-sensical uncertainty bounds.

To illustrate the effect of sample size on posterior inferences, Table 1 details the
performance metrics after evaluating C1, C2, and C3, as well as two scaled versions of
them. As expected, as the number of trials grows, the limits of the classical confidence
intervals assume more sensical values. It is further worth noting that the classical point
estimate itself is ignorant to the sample size (since the confusion matrices retain the
same proportions). By contrast, the posterior mean reflects a shrinking influence from
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Fig. 2. (a) Confusion matrix of the classifiers studied in Section 3. (b)(c)(d) Posterior distribution
of the classifier’s multiclass balanced accuracy. For each distribution the posterior mean and 95%
confidence interval is indicated. Figure generated by IllustrativeExample0.m, available
online [9].

the prior and a growing influence from the data as its posterior interval tightens. The
posterior mean and the sample balanced accuracy would agree in the limit of infinite
data.

Ranking Competing Classifiers. The procedure described in Section 4.5 makes it
possible to rank the competing classifiers C1, C2 and C3 according to their posterior
distributions. We begin by computing the pairwise distribution p (δ | D) for each com-
peting classifier. The three resulting distributions are depicted in Fig. 3.

It is worth recalling that the posterior mean of δ is not simply the difference between
the involved posterior means. The posterior mean of δ takes into account the uncertainty
of the λs. Continuing with the next steps of the proposed method, the resulting rank is:
1. C3, 2. C1 and 3. C2.

5.2 Action Detection

There has been increasing momentum in studying models for visual recognition of hu-
man actions from images. One recent study [23] proposed a system for action modelling
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Table 1. This table summarizes performance statistics of the classifiers studied in Section 3.
C1, C2 and C3 are the confusion matrices of the classifiers considered in section 3. C4, C5 and
C6 provide the same information scaled by a factor of 10. Likewise, C7, C8 and C9 are scaled
by a factor of 100. The statistics computed for all matrices is the mean and the 95% confidence
interval. The table compares the PDBAC with the sample balanced accuracy, the sample accuracy,
the Fµ-score, and the Kappa coefficient. The grey figures represent 95% C.I. whose limits escape
the domain [0, 1].

PDBAC bac acc Fµ-score KC

μ 95%C.I μ 95%C.I μ 95%C.I μ 95%C.I μ 95%C.I
C1 0.776 [0.62 - 0.90] 0.829 [0.73 - 0.92] 0.891 [0.79 - 0.98] 0.821 - 0.769 [0.57 - 0.96]
C2 0.498 [0.37 - 0.65] 0.462 [0.32 - 0.59] 0.717 [0.58 - 0.85] 0.457 - 0.331 [0.02 - 0.63]
C3 0.879 [0.74 - 0.97] 0.966 [0.92 - 1.01] 0.978 [0.93 - 1.02] 0.945 - 0.953 [0.86 - 1.04]
C4 0.822 [0.77 - 0.87] 0.829 [0.80 - 0.85] 0.891 [0.86 - 0.92] 0.821 - 0.769 [0.70 - 0.82]
C5 0.468 [0.42 0.52] 0.462 [0.42 - 0.50] 0.717 [0.67 - 0.75] 0.457 - 0.331 [0.23 - 0.42]
C6 0.955 [0.93 - 0.98] 0.966 [0.95 - 0.98] 0.978 [0.96 - 0.99] 0.945 - 0.953 [0.92 - 0.98]
C7 0.828 [0.81 - 0.85] 0.829 [0.82 - 0.83] 0.891 [0.88 - 0.90] 0.821 - 0.769 [0.75 - 0.78]
C8 0.463 [0.45 - 0.48] 0.462 [0.44 - 0.47] 0.717 [0.70 - 0.73] 0.457 - 0.331 [0.30 - 0.36]
C9 0.966 [0.96 - 0.97] 0.966 [0.96 - 0.97] 0.978 [0.97 - 0.98] 0.945 - 0.953 [0.94 - 0.96]

Fig. 3. (a)(b)(c) Posterior distribution of the difference of two posterior balanced accuracies com-
puted as explained in Section 4.5. The posterior balanced accuracies λ1, λ2, and λ3 stem from
C1, C2, and C3, respectively. For each distribution the posterior mean and the 95% confidence
interval are indicated. Figure generated by IllustrativeExample0.m, available online [9].



Probabilistic Performance Evaluation for Multiclass Classification 359

Fig. 4. (a) Confusion matrices of two classifiers [2, 23] for visual action detection (see Sec-
tion 5.2). (b) Posterior distributions of the two classifiers’ multiclass balanced accuracies. (c) Pos-
terior distribution of the difference in balanced accuracy between the two classifiers. Figure gen-
erated by IllustrativeExample1.m, available online [9].

based on a classification method for human actions from image sequences. The authors
compared their classifier to an alternative approach [2] using a dataset composed of
three classes representing the acts of ‘moving an object’, ‘making a sandwich’, and
‘opening a book’, respectively.

We revisited the reported results and, based on the published confusion matrices
(Fig. 4a), computed the posterior multiclass balanced accuracies along with several sum-
mary statistics (Fig. 4b). Our results show that, in contrast to conventional sample ac-
curacies, posterior balanced accuracies provide a rich representation of our knowledge
about each classifier’s performance. Critically, using the approach outlined in
Section (Sec. 4.5), we can infer on the difference between the two performances. Specif-
ically, given the two competing classifiers , CB is ranked number one with a posterior
expectation of the difference of 0.23. We illustrate the full posterior distribution of δ
using a kernel density estimator (bandwidth 0.0125), as shown in Fig. 4c.

6 Discussion

Classification algorithms frequently form a critical part of complex systems for pat-
tern recognition and machine learning, such as those found in the domain of robotics.
However, evaluating the performance of a given system, and comparing it to others, is
often subject to methodological limitations. Reporting overall classification accuracy,
for example, is statistically unwarranted because it can only be interpreted in relation
to a baseline level that depends on the degree of class imbalance at hand. Sample statis-
tics, such as the sample balanced accuracy for instance, rectify this problem but do not
readily embrace our uncertainty about the performance metric of interest.
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In this paper, we described how the above limitations can be overcome in a natural
way using a Bayesian framework for inferring on the balanced accuracy. The approach
generalizes our previous work on balanced accuracies for binary classification problem.
More importantly, a method of ranking competing classifiers using their posterior bal-
anced accuracy is proposed. The main advantage of this methods is that it permits to
account for the uncertainty in the classifiers’ performance during evaluation.

One critical feature of this approach is the flexibility with which posterior inferences
can be summarized. In particular, we can obtain derivative inferences, such as our confi-
dence with which one classifier is better than another. In this context, it is worth noting
that, in order to ensure a fair comparison, it is important that the algorithms whose
performances are compared were applied to the same dataset.

To facilitate its widespread use, we provide an open-source MATLAB toolbox which
we have made available for download [9]. With this toolbox we hope that balanced accu-
racies may help improve the correct evaluation and comparison of multiclass classifiers
in future classification systems.
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