Skip to main content

High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling

  • Chapter
  • First Online:
High-Efficiency Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 190))

Abstract

Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current–voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10−10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glunz, S.W., Preu, R., Biro, D.: Crystalline silicon solar cells: state-of-the-art and future developments. In: Sayigh, A. (ed.) Comprehensive Renewable Energy, vol. 1, pp. 353–387. Elsevier, Oxford (2012)

    Chapter  Google Scholar 

  2. Löper, P.: Silicon nanostructures for photovoltaics. Dissertation in submission, Universität Freiburg, Freiburg, Germany (2013)

    Google Scholar 

  3. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 41). Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013)

    Article  Google Scholar 

  4. Staebler, D.L., Wronski, C.R.: Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31(4), 292–294 (1977)

    Article  CAS  Google Scholar 

  5. Lee, B.G., Hiller, D., Luo, J.-W., Semonin, O.E., Beard, M.C., Zacharias, M., Stradins, P.: Strained interface defects in silicon nanocrystals. Adv. Funct. Mater. 22(15), 3223–3232 (2012)

    Article  CAS  Google Scholar 

  6. Cuevas, A.: Misconceptions and misnomers in solar cells. In: Proceedings of the 26th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 2012

    Google Scholar 

  7. Löper, P., Canino, M., Lopez-Vidrier, J., Schnabel, M., Schindler, F., Heinz, F., Witzky, A., Bellettato, M., Allegrezza, M., Hiller, D., Hartel, A., Gutsch, S., Hernandez, S., Guerra, R., Ossicini, S., Garrido, B., Janz, S., Zacharias, M.: Silicon nanocrystals from high-temperature annealing: characterization on device level. Phys. Status. Solidi. A210, 669–675 (2013)

    Google Scholar 

  8. Löper, P., Stüwe, D., Künle, M., Bivour, M., Reichel, C., Neubauer, R., Schnabel, M., Hermle, M., Eibl, O., Janz, S., Zacharias, M., Glunz, S.W.: A membrane device for substrate-free photovoltaic characterization of quantum dot based p-i-n solar cells. Adv. Mater. 24, 3124–3129 (2012)

    Article  Google Scholar 

  9. Löper, P., Canino, M., Qazzazie, D., Schnabel, M., Allegrezza, M., Summonte, C., Glunz, S.W., Janz, S., Zacharias, M.: Silicon nanocrystals embedded in silicon carbide: investigation of charge carrier transport and recombination. Appl. Phys. Lett. 102(033507), 1–4 (2013)

    Google Scholar 

  10. Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., Bläsing, J.: Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80(4), 661–663 (2002)

    Article  CAS  Google Scholar 

  11. Song, D., Cho, E.-C., Conibeer, G., Cho, Y.-H., Huang, Y.: Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering. J. Vac. Sci. Tech. B 25(4), 1327–1335 (2007)

    Article  CAS  Google Scholar 

  12. Cheng, Q., Tam, E., Xu, S., Ostrikov, K.K.: Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale 2(4), 594–600 (2010)

    Article  CAS  Google Scholar 

  13. Künle, M., Kaltenbach, T., Löper, P., Hartel, A., Janz, S., Eibl, O., Nickel, K.-G.: Si-rich a-SiC:H thin films: structural and optical transformations during thermal annealing. Thin Solid Films 519(1), 151–157 (2010)

    Article  Google Scholar 

  14. Summonte, C., Canino, M., Allegrezza, M., Bellettato, M., Desalvo, A., Mirabella, S., Terrasi, A. Systematic characterization of silicon nanodot absorption for third generation photovoltaics. In: Proceedings of the 26th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 Sept 2011, pp. 361–6

    Google Scholar 

  15. Kurokawa, Y., Miyajima, S., Yamada, A., Konagai, M.: Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn. J. Appl. Phys. 45(40), 1064–1066 (2006)

    Article  Google Scholar 

  16. Summonte, C., Desalvo, A., Canino, M., Allegrezza, M., Rosa, M., Ferri, M., Centurioni, E., Terrasi, A., Mirabella, S. Optical properties of silicon nanodots in SiC matrix, In: 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010

    Google Scholar 

  17. Shukla, R., Summonte, C., Canino, M., Allegrezza, M., Bellettato, M., Desalvo, A., Nobili, D., Mirabella, S., Sharma, N., Jangir, M., Jain, I.P.: Optical and electrical properties of Si nanocrystals embedded in SiC matrix. Adv. Mater. Lett. 3(4), 297–304 (2012)

    Article  Google Scholar 

  18. Schnabel, M., Löper, P., Gutsch, S., Wilshaw, P.R., Janz, S.: Thermal oxidation and encapsulation of silicon–carbon nanolayers. Thin Solid Films 527, 193–199 (2013)

    Article  CAS  Google Scholar 

  19. Canino, M., Summonte, C., Allegrezza, M., Shukla, R., Jain, I.P., Bellettato, M., Desalvo, A., Mancarella, F., Sanmartin, M., Terrasi, A., Löper, P., Schnabel, M., Janz, S.: Identification and tackling of a parasitic surface compound in SiC and Si-rich carbide films. Mater. Sci. Eng. B 178, 623–629 (2013)

    Article  CAS  Google Scholar 

  20. Johnson, F.A.: Lattice absorption bands in silicon. Proc. Phys. Soc. 73, 265 (1959)

    Article  CAS  Google Scholar 

  21. Kaneko, T., Nemoto, D., Horiguchi, A., Miyakawa, N.: FTIR analysis of a-SiC:H films grown by plasma enhanced CVD. J. Cryst. Growth 275(1–2), e1097–e1101 (2005)

    Article  CAS  Google Scholar 

  22. Summonte, C., Rizzoli, R., Bianconi, M., Desalvo, A., Iencinella, D., Giorgis, F.: Wide band-gab silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depisition. J. Appl. Phys. 96(7), 3987–3997 (2004)

    Article  CAS  Google Scholar 

  23. Scherrer, P.: Göttinger Nachrichten Gesellschaft 2, 98 (1918)

    Google Scholar 

  24. Song, D., Cho, E.-C., Cho, Y.-H., Conibeer, G., Huang, Y., Huang, S., Green, M.A.: Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films 516, 3824–3830 (2008)

    Article  CAS  Google Scholar 

  25. Summonte, C., Canino, M., Allegrezza, M., Bellettato, M., Desalvo, A., Shukla, R., Jain, I.P., Crupi, I., Milita, S., Ortolani, L., López-Conesa, L., Estradé, S., Peiró, F., Garrido, B.: Boron doping of silicon rich carbides: electrical properties. Mater. Sci. Eng. B 178, 551–558 (2013)

    Article  CAS  Google Scholar 

  26. Hiller, D., Goetze, S., Zacharias, M.: Rapid thermal annealing of size-controlled Si nanocrystals: dependence of interface defect density on thermal budget. J. Appl. Phys. 109(5), 054308–054308-5 (2011)

    Google Scholar 

  27. Künle, M.T.: Silicon carbide single and multilayer thin films for photovoltaic applications. Dissertation, Universität Tübingen, Tübingen, Germany (2011)

    Google Scholar 

  28. López-Vidrier, J., Hernández, S., Samà, J., Canino, M., Allegrezza, M., Bellettato, M., Shukla, R., Schnabel, M., Löper, P., López-Conesa, L., Estradé, S., Peiróa, F., Janz, S., Garrido, B.: Structural, optical and electrical properties of silicon nanocrystals embedded in SixC1 − x/SiC multilayer systems for photovoltaic applications. Mater. Sci. Eng. B 178, 639–644 (2013)

    Article  Google Scholar 

  29. Hernandez, S., Summonte, C., Allegrezza, M., Bellettato, M., Liscio, F., Canino, M., Desalvo, A. Space of formation of silicon nanocrystals in silicon carbide, In: Proceedings of the E-MRS Spring Meeting, Strasbourg, France (2013)

    Google Scholar 

  30. Peibst, R., Dürkop, T., Bugiel, E., Fissel, A., Costina, I., Hofmann, K.R.: Driving mechanisms for the formation of nanocrystals by annealing of ultrathin Ge layers in SiO_{2}. Phys. Rev. B 79, 195316 (2009)

    Article  Google Scholar 

  31. Zacharias, M., Streitenberger, P.: Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces. Phys. Rev. B 62(12), 8391–8396 (2000)

    Article  CAS  Google Scholar 

  32. Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005), http://www.bo.imm.cnr.it/users/centurioni/optical.html

  33. Allegrezza, M.: Minuitfit. http://www.bo.imm.cnr.it/users/allegrezza/minuit/minuitfit.html

  34. Jellison Jr., G.E., Modine, F.A.: Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69(3), 371–373 (1996). Erratum, ibid. 69:2137

    Article  CAS  Google Scholar 

  35. Jellison, G.E., Chisholm, M.F., Gorbatkin, S.M.: Optical functions of chemical vapor deposited thin‐film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62(25), 3348–3350 (1993)

    Article  CAS  Google Scholar 

  36. Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983)

    Article  CAS  Google Scholar 

  37. Palik, E.D.: Handbook of Optical Constants of Solids. Academic, New York, NY (1991)

    Google Scholar 

  38. Guerra, R., Degoli, E., Ossicini, S.: Size, oxidation, and strain in small Si/SiO2 nanocrystals. Phys. Rev. B 80(155332), 1–5 (2009)

    Google Scholar 

  39. Alonso, M.I., Marcus, I.C., Garriga, M., Goñi, A.R., Jedrzejewski, J., Balberg, I.: Evidence of quantum confinement effects on interband optical transitions in Si nanocrystals. Phys. Rev. B 82(4), 045302 (2010)

    Article  Google Scholar 

  40. Moreno, J.A., Garrido, B., Pellegrino, P., Garcia, C., Arbiol, J., Morante, J.R., Marie, P., Gourbilleau, F., Rizk, R.: Size dependence of refractive index of Si nanoclusters embedded in SiO2. J. Appl. Phys. 98(1), 013523–013523-4 (2005)

    Google Scholar 

  41. Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G., Cerqueira, M.F., Alves, E., Stepikhova, M.: Dielectric function of nanocrystalline silicon with few nanometers (<3 nm) grain size. Appl. Phys. Lett. 82(18), 2993–2995 (2003)

    Article  CAS  Google Scholar 

  42. Ding, L., Chen, T.P., Liu, Y., Ng, C.Y., Fung, S.: Optical properties of silicon nanocrystals embedded in a SiO_{2} matrix. Phys. Rev. B 72, 125419 (2005)

    Article  Google Scholar 

  43. Allegrezza, M., Hiller, D., Löper, P., Summonte, C.: Optical function and absorption edge of silicon nanocrystals, In: Proceedings of the E-MRS Spring Meeting, Strasbourg, France (2013)

    Google Scholar 

  44. Demontis, V., Sanna, C., Melskens, J., Santbergen, R., Smets, A.H.M., Damiano, A., Zeman, M.: The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells. J. Appl. Phys. 113(6), 064508–064508-9 (2013)

    Google Scholar 

  45. Dutta, U., Chatterjee, P.: The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters. J. Appl. Phys. 96(4), 2261–2271 (2004)

    Article  CAS  Google Scholar 

  46. Hegedus, S.S.: Current–voltage analysis of a-Si and a-SiGe solar cells including voltage-dependent photocurrent collection. Prog. Photovolt. Res. Appl. 5(3), 151–168 (1997)

    Article  CAS  Google Scholar 

  47. Werner, J.H.: Schottky barrier and pn-junction I/V plots - small signal evaluation. Appl. Phys. A 47, 291–300 (1988)

    Article  Google Scholar 

  48. Crandall, R.S.: Modeling of thin film solar cells: uniform field approximation. J. Appl. Phys. 54(12), 7176–7186 (1983)

    Article  CAS  Google Scholar 

  49. Merten, J., Asensi, J.M., Voz, C., Shah, A.V., Platz, R., Andreu, J.: Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. IEEE Trans. Electron Dev. 45(2), 423–429 (1998)

    Article  Google Scholar 

Download references

Acknowledgement

Funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 245977 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Löper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Löper, P., Canino, M., Schnabel, M., Summonte, C., Janz, S., Zacharias, M. (2014). High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_6

Download citation

Publish with us

Policies and ethics