Skip to main content

Identity Characterization

  • Chapter
  • First Online:
Deterministic Abelian Sandpile Models and Patterns

Part of the book series: Springer Theses ((Springer Theses))

  • 607 Accesses

Abstract

In this chapter we will present the derivation of an Explicit formula for the Identity configuration of the Abelian Sandpile Model in a particular directed lattice, the Pseudo-Manhattan lattice, that is known in literature also under the name of F-lattice [1]. This is the first explicit characterization of an Identity configuration for the ASM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The formula here present is different from the one presented in [2], this one is the correction.

References

  1. D. Dhar, T. Sadhu, S. Chandra, Pattern formation in growing sandpiles. EPL 85, 48002 (2009)

    Article  ADS  Google Scholar 

  2. S. Caracciolo, G. Paoletti, A. Sportiello, Explicit characterization of the identity configuration in an abelian sandpile model. J. Phys. A Math. Theor. 41, 495003 (2008). arXiv:0809.3416v2

    Google Scholar 

  3. M. Creutz, Abelian sandpiles. Comp. in Phys. 5, 198–203 (1991)

    Article  ADS  Google Scholar 

  4. M. Creutz, Abelian sandpiles. Nucl. Phys. B (Proc. Suppl.) 20, 758–761 (1991)

    Article  ADS  Google Scholar 

  5. M. Creutz, Playing with sandpiles. Phys. A Stat. Mech. Appl. 340, 521–526 (2004). Complexity and Criticality: in memory of Per Bak (1947–2002)

    Google Scholar 

  6. D. Dhar, P. Ruelle, S. Sen, D.N. Verma, Algebraic aspects of abelian sandpile models. J. Phys. A Math. Gen. 28, 805 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Creutz, P. Bak, Fractals and self-organized criticality, in Fractals in science, ed. by A. Bunde, S. Havli(Springer, Berlin 1994), pp. 26–47

    Google Scholar 

  8. R. Cori, D. Rossin, On the sandpile group of dual graphs. Eur. J. Comb. 21, 447–459 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.N. Majumdar, D. Dhar, Height correlations in the abelian sandpile model. J. Phys. A Math. Gen. 24, L357 (1991)

    Article  ADS  Google Scholar 

  10. S.N. Majumdar, D. Dhar, Equivalence between the abelian sandpile model and the \(q\rightarrow 0\) limit of the potts model. Phys. A Stat. Mech. Appl. 185, 129–145 (1992)

    Article  Google Scholar 

  11. Y. Le-Borgne, D. Rossin, On the identity of the sandpile group. Discrete Math. 256, 775–790 (2002). LaCIM 2000 Conference on Combinatorics, Computer Science and Applications.

    Google Scholar 

  12. M. Creutz, Xtoys: cellular automata on xwindows, Nucl. Phys. B Proc. Suppl. 47, 846–849 (1996). code: http://thy.phy.bnl.gov/www/xtoys/xtoys.html

  13. S. Caracciolo, G. Paoletti, A. Sportiello, Conservation laws for strings in the abelian sandpile model. EPL 90, 60003 (2010). arXiv:1002.3974v1

    Google Scholar 

  14. S. Caracciolo, M.S. Causo, P. Grassberger, A. Pelissetto, Determination of the exponent \(\gamma \) for saws on the two-dimensional manhattan lattice. J. Phys. A Math. Gen. 32, 2931 (1999)

    Article  ADS  MATH  Google Scholar 

  15. J.T. Chalker, P.D. Coddington, Percolation, quantum tunnelling and the integer hall effect. J. Phys. C Solid State Phy. 21, 2665 (1988)

    Article  ADS  Google Scholar 

  16. T. Sadhu, D. Dhar, Pattern formation in growing sandpiles with multiple sources or sinks. J. Stat. Phy. 138, 815–837 (2010). doi:10.1007/s10955-009-9901-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. Dhar, T. Sadhu, Pattern formation in fast-growing sandpiles. ArXiv e-prints, (2011), arXiv:1109.2908v1

    Google Scholar 

  18. T. Sadhu, D. Dhar, The effect of noise on patterns formed by growing sandpiles, J. Stat. Mech. Theory Exp. 2011, P03001 (2011). arXiv:1012.4809

    Google Scholar 

  19. S. Ostojic, Patterns formed by addition of grains to only one site of an abelian sandpile. Phys. A Stat. Mech. Appl. 318, 187–199 (2003)

    Article  MATH  Google Scholar 

  20. L. Levine, Y. Peres, Scaling limits for internal aggregation models with multiple sources. J. d’Anal. Mathé. 111, 151–219 (2010). doi:10.1007/s11854-010-0015-2

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Levine, Limit theorems for internal aggregation models, Ph.D. thesis, University of California, at Berkeley, fall 2007 arXiv:0712.4358. http://math.berkeley.edu/~levine/levine-thesis.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Paoletti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paoletti, G. (2014). Identity Characterization. In: Deterministic Abelian Sandpile Models and Patterns. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01204-9_4

Download citation

Publish with us

Policies and ethics