Skip to main content

Low-Dimensional Chaos in Large Conductance Ca-Activated K-Channel Gating Kinetics

  • Chapter
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 321 Accesses

Abstract

The dynamics of single channel gating kinetics is conventionally attributed to stochastic processes generating the open and close states of the channel. However, recent evidence has accumulated for low-dimensional deterministic dynamics in the geometric or temporal evolution of various biological systems. Representative open and close time series of a large conductance Ca-activated K-channel (BK channel), obtained from a cell-attached patch-clamp of a human pituitary cell, were studied by dynamical analysis. Dynamical analysis by nonlinear deterministic measures of the nonstationary open and close time series included geometrical reconstruction by recurrence diagrams, point correlation dimension (PD2i), “chaoticity” of time series by dynamic Lyapunov exponents, and long-range scaling properties. Statistical significance of the dynamical measures was obtained from phase-randomized data sets constructed from the original data addressing the null hypothesis that the original time series was indistinguishable from a stochastic process (linearly correlated noise). The recurrence diagrams revealed nonstationarities in the open and close data series but showed geometrically low-dimensional deterministic structure that was absent in the surrogate series. The correlation dimensions (PD2i) were 5.5 and 2.9 for open and close time series, statistically different from their surrogate counterparts (7.6 and 6.0, respectively), the small noninteger numbers suggesting low-dimensional chaos. The dynamic largest Lyapunov exponents, for most of the time series, revealed positive numbers indicative of chaotic dynamics. The asymptotic scaling exponents were > 0.5 < 1.0 for both open and close time series, suggesting the presence of scale-invariant long-range power-law correlations (“memory”). The results suggest that single ion channel gating kinetics exhibit low-dimensional chaotic dynamics and call for deterministic descriptors of channel gating, reinvestigation of other channel types and deterministic or fractal modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammil OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high-resolution current recording from cell and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981)

    Article  Google Scholar 

  2. Sakmann B, Neher E (eds.): Single-Channel Recording. Plenum, New York (1993)

    Google Scholar 

  3. Bassingthwaigthte JB, Liebovitch LS, West BJ: Fractal Physiology. Am. Physiol. Soc., Bethesda MD (1994)

    Google Scholar 

  4. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N: Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74, 1–47 (1994)

    PubMed  CAS  Google Scholar 

  5. Holstein-Rathlou N-H, Marsh DJ: Renal blood flow regulation and arterial pressure fluctuations: A case study in nonlinear dynamics. Physiol. Rev. 74, 637–681 (1994)

    PubMed  CAS  Google Scholar 

  6. Colquhoun D, Hawkes AG: The principles of the stochastic interpretation of ion-channel mechanisms. In: Single-Channel Recording. B Sakmann, E. Neher (eds.), Plenum, New York, pp. 135–175 (1983)

    Chapter  Google Scholar 

  7. DeFelice LJ: Introduction to Membrane Noise. Plenum, New York (1981)

    Book  Google Scholar 

  8. Hille B: Ionic Channels and Excitable Membranes. Sinauer Associates, Sunderland MA (1984)

    Google Scholar 

  9. Horn R: Statistical methods for model discrimination: Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys. J. 51, 255–263 (1987)

    Article  PubMed  CAS  Google Scholar 

  10. Liebovitch LS, Fischbarg J, Koniarek JP: Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84, 37–68 (1987)

    Article  Google Scholar 

  11. Liebovitch LS, Fischbarg J, Koniarek JP, Todorova I, Wang M: Fractal model of ion-channel kinetics. Biochim. Biophys. Acta 896, 173–180 (1987)

    Article  PubMed  CAS  Google Scholar 

  12. Liebowitch LS, Sullivan JM: Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J. 52, 979–988 (1987)

    Article  Google Scholar 

  13. Liebovitch LS, Tóth TI: The Akaike information criterion (AIC) is not a sufficient condition to determine the number of ion channel states from single channel recordings. Synapse 5, 134–138 (1990)

    Article  PubMed  CAS  Google Scholar 

  14. Liebovitch LS, Tóth TI: A model of ion channel kinetics using deterministic chaotic rather than stochastic processes. J Theor. Biol. 148, 243–267 (1991)

    Article  PubMed  CAS  Google Scholar 

  15. Liebovitch LS, Czegledy FP: A model of ion channel kinetics based on deterministic, chaotic motion in a potential with two local minima. Ann. Biomed. Eng. 20, 517–531, (1992)

    Article  PubMed  CAS  Google Scholar 

  16. French AS, Stockbridge LL: Fractal and Markov behavior in ion channel kinetics. Can. J. Physiol. Pharmacol. 66, 967–970 (1988)

    Article  PubMed  CAS  Google Scholar 

  17. Horn R, Korn SJ: Model selection: reliability and bias. Biophys. J. 55, 379–381 (1989)

    Article  PubMed  CAS  Google Scholar 

  18. Korn SJ, Horn R: Statistical discrimination of fractal and Markov models of single-channel gating. Biophys. J. 54, 871–877 (1988)

    Article  PubMed  CAS  Google Scholar 

  19. Liebovitch LS: Analysis of fractal ion channel gating kinetics: kinetic rates, energy levels, and activation energies. Math. Biosci. 93, 97–115 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. Liebovitch LS:Testing fractal and Markov models of ion channel kinetics. Biophys. J. 55, 373–377 (1989)

    Article  PubMed  CAS  Google Scholar 

  21. McManus OB, Weiss DS, Spivak CE, Blatz AL, Magleby KL: Fractal models are inadequate for the kinetics of four different ion channels. Biophys. J. 54, 859–870 (1988)

    Article  PubMed  CAS  Google Scholar 

  22. McManus OB, Spivak CE, Blatz AL, Weiss DS, Magleby KL: Fractal models, Markov models, and channel kinetics. Biophys. J. 55, 383–385 (1989)

    Article  PubMed  CAS  Google Scholar 

  23. Samson MSP, Ball FG, Kerry CJ, McGee R, Ramsey RL, Usherwood PNR: Markov, fractal, diffusion, and related models of ion channel gating. Biophys. J. 56, 1229–1243 (1989)

    Article  Google Scholar 

  24. Stockbridge LL, French AS: Characterization of a calcium-activated potassium channel in human fibroblasts. Can. J. Physiol. Pharmacol. 67, 1300–1307 (1989)

    Article  PubMed  CAS  Google Scholar 

  25. Eckmann J-P, Kamphorst SO, Ruelle D: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  26. Koebbe M, Mayer-Kress G: Use of recurrence plots in the analysis of time series data. In: Nonlinear Modeling and Forecasting, SFT Studies in the Sciences of Complexity, M Casdagli, S Eubank (eds.), Addison Wesley, Redwood City CA, pp. 361–378 (1992)

    Google Scholar 

  27. Mayer-Kress: Localized measures for nonstationary time-series of physiological data. Integr. Physiol. Behav. Sci. 29, 205–210 (1994)

    Article  PubMed  CAS  Google Scholar 

  28. Zbilut JP, Webber CL: Embeddings and delays as derived from quantification of recurrence plots. Physics Lett. A 171, 199–203 (1992)

    Article  Google Scholar 

  29. Webber CL: Rhythmogenesis of deterministic breathing patterns. In: Rhythms in Physiological Systems. H. Haken, H-P Koepchen (eds.) Springer-Verlag, Berlin, pp. 177–191 (1991)

    Chapter  Google Scholar 

  30. Webber CL, Zbilut JP: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)

    PubMed  Google Scholar 

  31. Grassberger P, Procaccia I: Measuring the strangeness of strange attractors. Physica 9D, 189–208)1983)

    Google Scholar 

  32. Farmer JD, Ott E, Yorke JA: The dimension of chaotic attractors. Physica D7, 53–180 (1983)

    Google Scholar 

  33. Mayer-Kress G, Yates FE, Benton L, Keidel M, Tirsch W, Pöppl SJ, Geist K: Dimensional analysis of nonlinear oscillations in brain, heart, and muscle. Math. Biosci. 90, 155–182 (1988)

    Article  Google Scholar 

  34. Skinner, JE, Carpeggiani C, Landisman CE, Fulton KW: Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ. Res. 68, 966–976 (1991)

    Article  PubMed  CAS  Google Scholar 

  35. Skinner JE, Pratt CM, Vybiral T: A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731–743 (1993)

    Article  PubMed  CAS  Google Scholar 

  36. Skinner JE, Molnar M, Tomberg C: The point correlation dimension: performance with nonstationary surrogate data and noise. Integr. Physiol. Behav. Sci. 29, 217–234 (1994)

    Article  PubMed  CAS  Google Scholar 

  37. Meyer M, Marconi C, Ferretti G, Fiocchi R, Mamprin F, Skinner JE, Cerretelli P: Dynamical analysis of heartbeat interval time series after cardiac transplantation. In: Fractals in Biology and Medicine, Volume II. GA Losa, D Merlini, TF Nonnenmacher, ER Weibel (eds.) Birkhäuser-Verlag, Basel, 139–151 (1998).

    Chapter  Google Scholar 

  38. Kowalik ZL, Elbert T: Changes of chaoticness in spontaneous EEG/MEG. Integr. Physiol. Behav. Sci. 29, 270–282 (1994)

    Article  PubMed  CAS  Google Scholar 

  39. Hausdorff JM, Peng C-K, Ladin Z, Wei JY, Goldberger AL: Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J. Appl. Physiol. 78, 349–358 (1995)

    PubMed  CAS  Google Scholar 

  40. Hausdorff JM, Purdon PL, Peng C-K, Ladin Z, Wei JY, Goldberger AL: Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80, 1448–1457 (1996)

    PubMed  CAS  Google Scholar 

  41. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Simons M, Stanley HE: Long-range correlations in nucleotide sequences. Nature 356, 168–170 (1992)

    Article  PubMed  CAS  Google Scholar 

  42. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE: Fractal analysis of DNA walks. Physica A 191, 25–29 (1992)

    Article  PubMed  CAS  Google Scholar 

  43. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Simons M, Stanley HE: Finite size effects on long-range correlations: implications for analyzing DNA sequences. Phys. Rev. E 47, 3730–3733 (1993)

    Article  CAS  Google Scholar 

  44. Peng C-K, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL: Long-range anti-correlations and non-Gaussian behavior of the heartbeat. Physical Review Letters 70, 1343–1346 (1993)

    Article  Google Scholar 

  45. Peng C-K, Buldyrev SV, Hausdorff JM, Havlin S, Mietus JE, Simons M, Stanley HE, Goldberger AL: Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr. Physiol. Behav. Sci. 29, 283–293 (1994)

    Article  PubMed  CAS  Google Scholar 

  46. Peng C-K, Havlin S, Stanley HE, Goldberger AL: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 6, 82–87 (1995)

    Article  Google Scholar 

  47. Theiler JS, Eubank S, Longtin A, Galdrikian B, Farmer JD: Testing for non-linearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992)

    Article  Google Scholar 

  48. Lowen SB, Teich MC: Fractal auditory nerve firing patterns may derive from fractal switching in sensory hair-cell ion channels. In: Noise in Physical Systems and 1/f Fluctuations. PH Handel, AL Chung (eds.) New York: American Institute of Physics, AIP Conference Proceedings 285, 781–784 (1993)

    Google Scholar 

  49. Lowen SB, Teich MC: Fractal renewal processes. IEEE Trans. Infor. Theor. 39, 1669–1671 (1993)

    Article  Google Scholar 

  50. Roncaglia R, Mannel R, Grignolini P: Fractal properties of ionic channels and diffusion. Math. Biosci. 123, 77–101 (1994)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Meyer, M., Skinner, J.E. (1998). Low-Dimensional Chaos in Large Conductance Ca-Activated K-Channel Gating Kinetics. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8936-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8936-0_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9834-8

  • Online ISBN: 978-3-0348-8936-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics