Skip to main content

Wavelet Modelling of High Resolution Radar Imaging and Clinical Magnetic Resonance Tomography

  • Conference paper
Book cover Multivariate Approximation and Splines

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 125))

  • 454 Accesses

Abstract

The speed with which clinical magnetic resonance imaging (MRI) systems spread throughout the world was phenomenal. Coherent wavelets allow for a unified model of the multichannel perfect reconstruction analysis-synthesis filter bank of high resolution radar imaging and MRI. The geometric quantization construction of matched bank filters depends upon the Kepplerian spatiotemporal strategy which succeeds in the synchronous and stroboscopic summation over phase histories in local frequency encoding channels. The Kepplerian planetary clockwork of quantum holography is implemented in symplectic affine planes by Fourier analysis of the Heisenberg nilpotent Lie group G, and the associated reconstructing symbolic calculus on the selected energetic stratum of the unitary dual G or the quantized calculus of the C*-algebra of G. The neural network performed by quantum holograms allows for localization of cortical activations of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkovich A. J., Pediatric Neuroimaging. Second edition, Raven Press, New York 1995.

    Google Scholar 

  2. Cutrona L. J., Leith E. M., Porcello L. J., and Vivian W. E., On the application of coherent optical processing techniques to synthetic-aperture radar. Proc. IEEE 54, 1026–1032 (1966).

    Article  MATH  Google Scholar 

  3. Davies E.R., Electronics, Noise and Signal Recovery. Academic Press, London, San Diego, New York 1993.

    Google Scholar 

  4. Gadian D. G., NMR and its Applications to Living Systems. Second edition, Oxford University Press, Oxford, New York, Tokyo 1995.

    Google Scholar 

  5. Gillies R. J. (Editor), NMR in Physiology and Biomedicine. Academic Press, San Diego, New York, Boston 1994.

    Google Scholar 

  6. Jolesz F. A., MRI-guided interventions. The Coolidge Sci. Rev. 2, 1–25 (1994).

    Google Scholar 

  7. Keller P. J., How big is k-space? Int. J. Neuroradiology 2, 274–289 (1996).

    Google Scholar 

  8. Mallick S. and Rajbenbach H., Photorefractive nonlinear optics and optical computing. In: Optical Phase Conjugation, M. Gower, D. Proch, editors, pp. 342–363, Springer-Verlag, Berlin, Heidelberg, New York 1994.

    Google Scholar 

  9. Marseille G. J., MRI scan time reduction through nonuniform sampling. Ph.D. Thesis, Delft University of Technology, Ponsen & Looijen, Wageningen 1997.

    Google Scholar 

  10. Mattson J. and Simon M., The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI. Bar-Ilan University Press, Ramat Gan 1996.

    Google Scholar 

  11. Müller W. K., Ziegler R., Bauer A., and Soldner E. H., Virtual reality in surgical arthroscopic training. J. Imag. Guid. Surg. 1, 288–294 (1995).

    Article  Google Scholar 

  12. Rihaczek A. W. and Hershkowitz S. J., Radar Resolution and Complex-Image Analysis. Artech House, Boston, London 1996.

    MATH  Google Scholar 

  13. Schempp W., Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory. Pitman Research Notes in Mathematics Series, Vol. 147, Longman Scientific and Technical, London 1986.

    MATH  Google Scholar 

  14. Schempp W., Geometric analysis: The double-slit interference experiment and magnetic resonance imaging. Cybernetics and Systems ′96, Vol. 1, pp. 179–183, Austrian Society for Cybernetic Studies, Vienna 1996.

    Google Scholar 

  15. Schempp W., Wavelets in high resolution radar imaging and clinical magnetic resonance imaging. Proc. IWISP ′96, Manchester, United Kingdom: Third International Workshop on Image and Signal Processing on the Theme of Advances in Computational Intelligence, B.G. Mertzios, P. Liatsis, editors, pp. 73–80, Elsevier, Amsterdam, Lausanne, New York 1996.

    Google Scholar 

  16. Schempp W., Wavelets and image processing: A geometric analysis approach to magnetic resonance tomography. Proc. First International Workshop on Advanced Signal Processing for Medical MRI-MRS, B. G. Mertzios, editor, pp. 80–83, Democritus University of Thrace, Xanthi, Hellas 1997.

    Google Scholar 

  17. Schempp W., Magnetic Resonance Imaging: Mathematical Foundations and Applications. John Wiley & Sons, New York, Chichester, Brisbane (in print).

    Google Scholar 

  18. Stephenson B., Kepler’s Physical Astronomy. Princeton University Press, Princeton, NJ 1994.

    MATH  Google Scholar 

  19. Tschudi T., Phase conjugation in optical signal processing. In: Optical Phase Conjugation, M. Gower, D. Proch, editors, pp. 364–380, Springer-Verlag, Berlin, Heidelberg, New York 1994.

    Google Scholar 

  20. van der Knaap M. S. and Valk J., Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. Second edition, Springer-Verlag, Berlin, Heidelberg, New York 1995.

    Google Scholar 

  21. Wehner D. R., High Resolution Radar. Artech House, Norwood, MA and London 1987.

    Google Scholar 

  22. Wickerhauser M. V., Custom wavelet packet image compression design. Proc. IWISP ′96, Manchester, United Kingdom: Third International Workshop on Image and Signal Processing on the Theme of Advances in Computational Intelligence, B.G. Mertzios, P. Liatsis, editors, pp. 47–52, Elsevier, Amsterdam, Lausanne, New York 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Schempp, W. (1997). Wavelet Modelling of High Resolution Radar Imaging and Clinical Magnetic Resonance Tomography. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds) Multivariate Approximation and Splines. ISNM International Series of Numerical Mathematics, vol 125. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8871-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8871-4_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9808-9

  • Online ISBN: 978-3-0348-8871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics