Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Cutaneous hyperalgesia is a consequence of plasticity changes in the nociceptive neuronal system under pathophysiological conditions. The main reasons for hyperalgesias are inflammation and neuropathic conditions. In this review we will mainly deal with inflammation-induced hyperalgesias which are much better understood than neuropathic dysaesthesias [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wahren LK, Torebjörk HE, Nystrom B (1991) Quantitative sensory testing before and after regional guanethidine block in patients with neuralgia in the hand. Pain 46: 23–30

    PubMed  CAS  Google Scholar 

  2. Ochoa JL, Yarnitsky D (1994) The triple cold syndrome — cold hyperalgesia, cold hypoaesthesia and cold skin in peripheral-nerve disease. Brain 117: 185–197

    PubMed  Google Scholar 

  3. Ochoa JL (1994) Pain mechanisms in neuropathy. Curr Opin Neurol 7: 407–414

    PubMed  CAS  Google Scholar 

  4. Koltzenburg M, Torebjörk HE, Wahren LK (1994) Nociceptor modulated central sensitisation causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117: 579–591

    PubMed  Google Scholar 

  5. LaMotte RH, Thalhammer JG, Torebjörk HE, Robinson CJ (1982) Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J Neurosci 2: 765–781

    Google Scholar 

  6. Robinson CJ, Torebjörk HE, LaMotte RH (1983) Psychophysical detection and pain ratings of incremental thermal stimuli: a comparison with nociceptor responses in humans. Brain Res 274: 87–106

    PubMed  CAS  Google Scholar 

  7. Torebjörk HE, LaMotte RH, Robinson CJ (1984) Peripheral neural correlates of mag-nitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51: 325–339

    PubMed  Google Scholar 

  8. Carpenter SE, Lynn B (1981) Vascular and sensory responses of human skin to mild injury after topical treatment with capsaicin. Br J Pharmacol 73: 755–758

    PubMed  CAS  Google Scholar 

  9. LaMotte RH, Lundberg LER, Torebjörk HE (1992) Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 448: 749–764

    Google Scholar 

  10. LaMotte RH, Shain CN, Simone DA, Tsai EF (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66: 190–211

    Google Scholar 

  11. Kilo S, Schmelz M, Koltzenburg M, Handwerker HO (1994) Different patterns of hyperalgesia induced by experimental inflammation in human skin. Brain 117: 385–396

    PubMed  Google Scholar 

  12. Koltzenburg M, Lundberg LER, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin [published erratum appears in Pain 1993 Jun; 53(3): 363]. Pain 51: 207–219

    PubMed  CAS  Google Scholar 

  13. Benrath J, Gillardon F Zimmermann M (1993) Differential time courses of hyperalgesia and inflammation in human skin after ultraviolet irradiation. Neuropeptides 24: 205

    Google Scholar 

  14. Lewis T, Love W S (1926) Vascular reactions of the skin to injury. Part III.-Some effects of freezing, of cooling and of warming. Heart 13: 27–60

    Google Scholar 

  15. Kilo S, Forster C, Geisslinger G, Brune K, Handwerker HO (1995) Inflammatory models of cutaneous hyperalgesia are sensitive to effects of ibuprofen in man. Pain 62: 187–193

    PubMed  CAS  Google Scholar 

  16. Lewis T (1942) Pain. Macmillan Pb, New York

    Google Scholar 

  17. Hardy JD, Wolff HG, Goodell H (1952) Experimental evidence on the nature of cutaneous hyperalgesia. J Clin Invest 29: 115–140

    Google Scholar 

  18. Hardy JD, Wolff HG, Goodell H (1952) Pain sensations and reactions. Williams & Wilkins, Baltimore

    Google Scholar 

  19. Schmelz M, Schmidt R, Ringkamp M, Forster C, Handwerker HO, Torebjörk HE (1996) Limitation of sensitization to injured parts of receptive fields in human skin Cnociceptors. Exp Brain Res 109: 141–147

    PubMed  CAS  Google Scholar 

  20. Thalhammer JG, LaMotte RH (1983) Heat sensitization of one half of a cutaneous nociceptor’s receptive field does not alter the sensitivity of the other half. In: JJ Bonica, U Lindblom, A Iggo (eds): Advances in pain research and therapy, vol. V. Raven Press, New York, 71–75

    Google Scholar 

  21. Culp WJ, Ochoa JL, Cline M, Dotson R (1989) Heat and mechanical hyperalgesia induced by capsaicin. Cross modality threshold modulation in human C nociceptors. Brain 112: 1317–1331

    PubMed  Google Scholar 

  22. LaMotte RH (1996) Secondary cutaneous hyperalgesia. In: C Belmont, F Cervero (eds): Neurobiology of nociceptors. Oxford University Press, Oxford, 390–417

    Google Scholar 

  23. Meyer RA, Raja SN, Campbell JN (1996) Neural mechanisms of primary hyperalgesia. In: C Belmont, F Cervero (eds): Neurobiology of nociceptors. Oxford University Press, Oxford, 370–389

    Google Scholar 

  24. Beise RD, Carstens E, Kohllöffel LUE (1998) Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain. Pain 74: 275–286

    PubMed  CAS  Google Scholar 

  25. Thalhammer JG, LaMotte RH (1982) Spatial properties of nociceptor sensitization following heat injury of the skin. Brain Res 231: 257–265

    PubMed  CAS  Google Scholar 

  26. LaMotte RH, Thalhammer JG, Robinson CJ (1983) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J Neurophysiol 50: 1–26

    Google Scholar 

  27. LaMotte RH, Torebjörk HE, Robinson CJ, Thalhammer JG (1984) Time-intensity pro-files of cutaneous pain in normal and hyperalgesic skin: a comparison with C-fiber nociceptor activities in monkey and human. J Neurophysiol 51: 1434–1450

    Google Scholar 

  28. Meyer RA, Campbell JN (1981) Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 213: 1527–1529

    PubMed  CAS  Google Scholar 

  29. Raja SN, Campbell JN, Meyer RA (1984) Evidence for different mechanisms of primary and secondary hyperalgesia following heat injury to the glabrous skin. Brain 107: 1179–1188

    PubMed  Google Scholar 

  30. Simone DA, Ngeow JY, Putterman GJ LaMotte RH (1987) Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 418: 201–203

    PubMed  CAS  Google Scholar 

  31. Baumann TK, Simone DA, Shain CN, LaMotte RH (1991) Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J Neurophysiol 66: 212–227

    PubMed  CAS  Google Scholar 

  32. Campbell JN, Khan AA, Meyer RA, Raja SN (1988) Responses to heat of C-fiber nociceptors in monkey are altered by injury in the receptive field but not by adjacent injury. Pain 32: 327–332

    PubMed  CAS  Google Scholar 

  33. Campbell JN, Raja SN, Meyer RA, Mackinnon SE (1988) Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32: 89–94

    PubMed  CAS  Google Scholar 

  34. Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk HE, Handwerker HO (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15: 333–341

    PubMed  CAS  Google Scholar 

  35. Torebjörk HE, Schmelz M, Handwerker HO (1996) Functional properties of human cutaneous nociceptors and their role in pain and hyperalgesia. In: C Belmont, F Cervero (eds): Neurobiology of nociceptors. Oxford University Press, Oxford, 349–369

    Google Scholar 

  36. Hallin RG, Torebjörk HE (1974) Methods to differentiate electrically induced afferent and sympathetic C unit responses in human cutaneous nerves. Acta Physiol Scand 92: 318–331

    PubMed  CAS  Google Scholar 

  37. Torebjörk HE, Hallin RG (1974) Identification of afferent C units in intact human skin nerves. Brain Res 67: 387–403

    PubMed  Google Scholar 

  38. Forster C, Schmelz M (1996) New developments in microneurography of human C fibers. News Physiol Sci 11: 170–175

    Google Scholar 

  39. Forster C, Handwerker HO (1990) Automatic classification and analysis of microneurographic spike data using a PC/AT. J Neurosci Meth 31: 109–118

    CAS  Google Scholar 

  40. Forster C, Magerl W, Beck A, Geisslinger G, Gall T, Brune K, Handwerker HO (1992) Differential effects of dipyrone, ibuprofen, and paracetamol on experimentally induced pain in man. Agents Actions 35: 112–121

    PubMed  CAS  Google Scholar 

  41. Forster C, Anton F, Reeh PW, Weber E, Handwerker HO (1988) Measurement of the analgesic effects of aspirin with a new experimental algesimetric procedure. Pain 32: 215–222

    PubMed  CAS  Google Scholar 

  42. Campbell JN, Meyer RA, LaMotte RH (1979) Sensitization of myelinated nociceptive afferents that innervate monkey hand. J Neurophysiol 42: 1669–1679

    PubMed  CAS  Google Scholar 

  43. Schmelz M, Schmidt R, Ringkamp M, Handwerker HO, Torebjörk HE (1994) Sensitization of insensitive branches of C nociceptors in human skin. J Physiol 480: 389–394

    PubMed  CAS  Google Scholar 

  44. Meyer RA, Davis KD, Cohen RH, Treede RD, Campbell JN (1991) Mechanically insensitive afferents (Mias) in cutaneous nerves of monkey. Brain Res 561: 252–261

    PubMed  CAS  Google Scholar 

  45. Torebjörk HE, Lundberg, LER, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448: 765–780

    PubMed  Google Scholar 

  46. Cervero F, Meyer RA, Campbell JN (1994) A psychophysical study of secondary hyperalgesia — evidence for increased pain to input from nociceptors. Pain 58: 21–28

    PubMed  CAS  Google Scholar 

  47. Zeilhofer HU, Reeh PW, Swandulla D, Kress M (1996) Ca2+ permeability of the sustained proton-induced cation current in adult rat dorsal root ganglion neurons. J Neurophysiol 76: 2834–2840

    PubMed  CAS  Google Scholar 

  48. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824

    PubMed  CAS  Google Scholar 

  49. Szolcsanyi J (1984) Capsaicin and neurogenic inflammation: history and early findings. In: LA Chahl, J. Szolcsányi, F Lembeck (eds): Antidromic vasodilatation and neurogenic inflammation. Hungarian Academy of Science, Budapest, 7–25

    Google Scholar 

  50. Lynn B, Shakhanbeh J (1988) Substance P content of the skin, neurogenic inflammation and numbers of C-fibres following capsaicin application to a cutaneous nerve in the rabbit. Neurosci 24: 769–775

    CAS  Google Scholar 

  51. Simone DA, Ochoa JL (1991) Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans. Pain 47: 285–294

    PubMed  CAS  Google Scholar 

  52. Manning DC, Raja SN, Meyer RA, Campbell JN (1991) Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin Pharmacol Therap 50: 721–729 (Abstract)

    CAS  Google Scholar 

  53. Keele CA, Armstrong D (1964) Substances producing pain and itch. Edward Arnold, London

    Google Scholar 

  54. Holzer-Petsche U (1992) Blood pressure and gastric motor responses to bradykinin and hydrochloric acid injected into somatic or visceral tissues. Naunyn-Schmiedebergs Arch Pharmacol 346: 219–225

    PubMed  CAS  Google Scholar 

  55. Dray A, Patel IA, Perkins MN, Rueff A (1992) Bradykinin-induced activation of fociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 107: 1129–1134

    CAS  Google Scholar 

  56. Schuligoi R, Donnerer J, Amann R (1994) Bradykinin-induced sensitization of afferent neurons in the rat paw. Neurosci 59: 211–215

    CAS  Google Scholar 

  57. Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH (1988) Bradykinin as a pain mediator: Receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Nat Acad Sci USA 85: 3245–3249

    PubMed  CAS  Google Scholar 

  58. Levine JD, Taiwo YO, Collins SD, Tam JK (1986) Noradrenaline hyperalgesia is mediated through interaction with sympathetic postganglionic neurone terminals rather than activation of primary afferent nociceptors. Nature 323: 158–160

    PubMed  CAS  Google Scholar 

  59. Rueff A, Dray A(1993) Sensitization of peripheral afferent fibers in the in vitro neonatal rat spinal-cord tail by bradykinin and prostaglandins. Neurosci 54: 527–535

    CAS  Google Scholar 

  60. Fox AJ, Barnes PJ, Urban L, Dray A (1993) An in-vitro study of the properties of single vagal afferents innervating guinea pigs airways. J Physiol (London) 469: 21–35

    CAS  Google Scholar 

  61. Kumazawa T, Mizumura K, Minagawa M, Tsujii Y.(1991) Sensitizing effects of bradykinin on the heat responses of the visceral nociceptor. J Neurophysiol 66: 1819–1824

    PubMed  CAS  Google Scholar 

  62. Koltzenburg M, Kress M, Reeh PW (1992) The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neurosci 46: 465–473

    CAS  Google Scholar 

  63. Lang E, Novak A, Reeh PW, Handwerker HO (1990) Chemosensitivity of fine afferents from rat skin in vitro. J Neurophysiol 63: 887–901

    CAS  Google Scholar 

  64. Kessler W, Kirchhoff C, Reeh PW, Handwerker HO (1992) Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res 91: 467–476

    PubMed  CAS  Google Scholar 

  65. Calderwood SK, Stevensson MA, Hahn GM (1988) Effects of heat on cell calcium and inositol lipid metabolism. Radiation Res 311: 414–425

    Google Scholar 

  66. Dray A, Perkins M (1993) Bradykinin and inflammatory pain. TINS 16: 99–104

    PubMed  CAS  Google Scholar 

  67. Kirchhoff C, Jung S, Reeh PW, Handwerker HO (1990) Carrageenan inflammation increases bradykinin sensitivity of rat cutaneous nociceptors. Neurosci Lett 111: 206–210

    PubMed  CAS  Google Scholar 

  68. Reeh PW, Brehm S (1993) Nociceptor excitation by inflammatory mediators and by mechanical stimulation in rat skin is neither enhanced by PGE2 nor suppressed by flurbiprofen. Soc Neurosci Abstr 19: 234

    Google Scholar 

  69. Kirchhoff C, Leah J, Jung S, Reeh PW (1992) Excitation of cutaneous sensory nerve endings in the rat by 4-aminopyridine and tetraethylammonium. J Neurosci 67: 125–131

    CAS  Google Scholar 

  70. Richardson BP, Engel G, Donatsch P, Stadler P (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126–131

    PubMed  CAS  Google Scholar 

  71. Jänig W, Morrison JF (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res 67: 87–114

    PubMed  Google Scholar 

  72. Nishi K, Sakanashi M, Takenaka F (1977) Activation of afferent cardiac sympathetic nerve fibers of the cat by pain producing substances and by noxious heat. Pflügers Arch 372: 53–61

    PubMed  CAS  Google Scholar 

  73. Fock S, Mense S (1976) Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105: 459–469

    PubMed  CAS  Google Scholar 

  74. Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72: 305–310

    PubMed  CAS  Google Scholar 

  75. Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibers. Pflügers Arch 347: 209–222

    PubMed  CAS  Google Scholar 

  76. Rueff A, Dray A (1992) 5-Hydroxytryptamine-induced sensitization and activation of peripheral fibres in the neonatal rat are mediated via different 5-hydroxytryptaminereceptors. Neurosci 50: 899–905

    CAS  Google Scholar 

  77. Mizumura K, Sato J, Kumazawa T (1987) Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflügers Arch 408: 565–572

    PubMed  CAS  Google Scholar 

  78. Handwerker HO, Reeh PW, Steen KH (1990) Effects of 5HT on nociceptors. In: J-M Besson (ed): Serotonin and pain. Elsevier Science Pb, Amsterdam, 1–15

    Google Scholar 

  79. Escalier A, Kayser V, Guilbaud G (1989) Influence of a specific 5-HT3 antagonist on carrageenan-induced hyperalgesia in rats. Pain 36: 249–255

    Google Scholar 

  80. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 231: 232–235

    CAS  Google Scholar 

  81. Mizumura, K, Minagawa M, Tsujii Y, Kumazawa T (1993) Prostaglandin E2-induced sensitization of the heat response of canine visceral polymodal receptors in vitro. Neurosci Lett 161: 117–119

    PubMed  CAS  Google Scholar 

  82. Ferreira SH, Lorenzetti BB, DeCampos DI (1990) Induction, blockade and restoration of a persistent hypersensitive state. Pain 42: 365–371

    PubMed  CAS  Google Scholar 

  83. Kumazawa T, Mizumura K, Koda H, Fukusako H (1996) EP receptor subtypes implicated in the PGE2-induced sensitization of polymodal receptors in response to bradykinin and heat. J Neurophysiol 75: 2361–2368

    PubMed  CAS  Google Scholar 

  84. Mizumura K, Koda H, Leng S, Kumazawa T (1996) Comparison of sensitizing effects of inflammatory mediators and second messengers on the bradykinin and heat responses of the polymodal receptor. 8th World Congress on Pain 119 (Abstract)

    Google Scholar 

  85. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1112

    PubMed  CAS  Google Scholar 

  86. Nicol GD, Klingberg DK, Vasko MR (1992) Prostaglandin E2increases calcium conductance and stimulates release of subtance P in avian sensory neurons. J Neurosci 12: 1917–1927

    PubMed  CAS  Google Scholar 

  87. Wallengren J, Hakanson R (1992) Effects of capsaicin, bradykinin and prostaglandin E2 in the human skin. Br J Dermatol 126: 111–117

    PubMed  CAS  Google Scholar 

  88. Ringkamp M, Schmelz M, Kress M, Allwang M, Ogilvie A, Reeh PW (1994) Activated human platelets in plasma excite nociceptors in rat skin, in vitro. Neurosci Lett 170: 103–106

    CAS  Google Scholar 

  89. Maclntyre DE, Gordon JL (1975) Calcium-dependent stimulation of platelet aggregation by PGE2. Nature 258: 337–339

    Google Scholar 

  90. Reeh PW, Kress M (1995) Effects of classical algogens. Semin Neurosci 7: 221–226

    CAS  Google Scholar 

  91. Brune K, Geilinger G, Menzel-Soglowek S (1992) Pure enantionmers of 2-arylpropionic acids: Tools in pain research and improved drugs in rheumatology. J Clin Pharmacol 32: 944–952

    PubMed  CAS  Google Scholar 

  92. Brehm S, Reeh PW (1994) Responsiveness of polymodal nociceptors to defined mechanical stimulation — effects of combined inflammatory mediators, additional PGE2 and of an antipyretic analgesic. Pflügers Arch 426: R54

    Google Scholar 

  93. Peer LA (1955) Transplantation of tissues. Williams & Wilkins, Baltimore

    Google Scholar 

  94. Häbler C (1929) Über den K- und Ca-Gehalt von Eiter und Exsudaten und seine Beziehungen zum Entzündungsschmerz. Klin Wochenschrift 8: 1569–1572

    Google Scholar 

  95. Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 12: 86–95

    CAS  Google Scholar 

  96. Steen KH, Reeh PW. (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154: 113–116

    PubMed  CAS  Google Scholar 

  97. Belmonte C, Gallar J, Pozo MA, Rebollo I (1991) Excitation by irritant chemical substances of sensory afferent units in the cat’s cornea. J Physiol 437: 709–725

    PubMed  CAS  Google Scholar 

  98. Bevan S, Yeats JC (1991) Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurones. J Physiol 433: 145–161

    PubMed  CAS  Google Scholar 

  99. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin [see comments]. Proc Natl Acad Sci USA 93: 15435–15439

    PubMed  CAS  Google Scholar 

  100. Wood J N, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8: 3208–3220

    PubMed  CAS  Google Scholar 

  101. Baccaglini PI, Hogan PG (1983) Some rat sensory neurons in cultures express characteristics of differential pain sensory cells. Proc Natl Acad Sci USA 80: 594–598

    PubMed  CAS  Google Scholar 

  102. Oka T, Aou S, Hori T (1994) Intracerebroventricular injection of interleukin-1 beta enhances nociceptive neuronal responses of the trigeminal nucleus caudalis in rats. Brain Res 656: 236–244

    PubMed  CAS  Google Scholar 

  103. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17: 3525–3537

    PubMed  CAS  Google Scholar 

  104. Kress M, Reeh PW, Vyklicky L (1997) An interaction of inflammatory mediators and protons in small diameter dorsal root ganglion neurons of the rat. Neurosci Lett 224: 37–40

    PubMed  CAS  Google Scholar 

  105. McGuirk SM, Dolphin AC (1997) G-protein mediation in nociceptive signal transduction: an investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons. Neurosci 49: 117–128

    Google Scholar 

  106. Mizumura K, Minagawa M, Tsujii Y, Kumazawa T (1990) The effects of bradykinin agonists and antagonists on visceral polymodal receptor activities. Pain 40: 221–227

    PubMed  CAS  Google Scholar 

  107. Burgess GM, Mullaney I, Mcneill M, Dunn PM, Rang HP (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 9: 3314–3325

    PubMed  CAS  Google Scholar 

  108. Parker PJ, Dekker LV (eds) (1997) Protein kinase C. Springer, Heidelberg

    Google Scholar 

  109. Alexander SPH, Peters JA (1997) Receptor & ion channel nomenclature supplement. TIPS (Suppl) 1–69

    Google Scholar 

  110. Mons N, Cooper DMF (1995) Adenylate cyclases: critical foci in neuronal signaling. TINS 18: 536–542

    PubMed  CAS  Google Scholar 

  111. Fasolato C, Innocenti B, Pozzan T (1994) Receptor-activated Ca2+ influx: how many mechanisms for how many channels? TIPS 15: 77–83

    PubMed  CAS  Google Scholar 

  112. Brandon EP, Idzerda RL, McKnight GS (1997) PKA isoforms, neural pathways, and behaviour: making the connection. Curr. Opin. Neurobiol. 7: 397–403

    PubMed  CAS  Google Scholar 

  113. Kress M, Rödl J, Reeh PW (1996) Stable analogues of cyclic AMP but not cyclic GMP sensitize unmyelinated primary afferents in rat skin to heat stimulation but not to inflammatory mediators, in vitro. Neurosci 74: 609–617

    CAS  Google Scholar 

  114. Ferreira SH, Nakamura M (1979) Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18: 179–190

    PubMed  CAS  Google Scholar 

  115. Supowit SC, Christensen MD, Westlund KN, Hallman DM, DiPette DJ (1995) Dexamethasone and activators of the protein kinase A and C signal transduction pathways regulate neuronal calcitonin gene-related peptide expression and release. Brain Res 686: 77–86

    PubMed  CAS  Google Scholar 

  116. Malmberg AB, Brandon EP, Idzerda RL, Liu HT, McKnight GS, Basbaum, AI (1997) Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neurosci 17: 7462–7470

    PubMed  CAS  Google Scholar 

  117. England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurons via the cyclic AMP-protein kinase A cascade. J Physiol (London) 495: 429–440

    CAS  Google Scholar 

  118. Wilcox GL (1993) Spinal mediators of nociceptive transmission and hyperalgesia: relationships among synaptic plasticity, analgesic tolerance and blood flow. Am Pain Soc J 2: 275

    Google Scholar 

  119. Dougherty PM, Palecek J, Willis WD (1993) Does sensitization of responses to excitatory amino acids underlie the psychophysical reports of two modalities of increased sensitivity in zones of secondary hyperalgesia? Am Pain Soc J 2: 276–279

    Google Scholar 

  120. Simone DA (1993) Mediators of spinal hyperexcitability and hyperalgesia. Am Pain Soc J 2: 283–286

    Google Scholar 

  121. Dougherty PM, Palecek J, Zorn S, Willis WD (1993) Combined application of excitatory amino-acids and substance-P produces long-lasting changes in responses of primate spinothalamic tract neurons. Brain Res Rev 18: 227–246

    PubMed  CAS  Google Scholar 

  122. Stubhaug A, Breivik H, Eide PK, Kreunen M. and Foss A (1997) Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand 41: 1124–1132

    PubMed  CAS  Google Scholar 

  123. Andersen OK, Felsby S, Nicolaisen L, Bjerring P, Jensen TS, Arendt Nielsen L (1996) The effect of ketamine on stimulation of primary and secondary hyperalgesic areas induced by capsaicin — a double-blind, placebo-controlled, human experimental study. Pain 66: 51–62

    PubMed  CAS  Google Scholar 

  124. Reeh PW, Sauer SK (1997) Chronic aspects in peripheral nociception. In: TS Jensen, JA Turner, Z Wiesenfeld-Hallin (eds): Proceedings of the 8th World Congress on Pain, Progress in pain research and management, vol. 8. IASP Press, Seattle, 115–131

    Google Scholar 

  125. Tominga M, Caterina MJ, Malmberg A, Rosen TA, Gilbert H et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Handwerker, H.O., Kress, M. (1999). Cutaneous hyperalgesia. In: Brain, S.D., Moore, P.K. (eds) Pain and Neurogenic Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8753-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8753-3_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9758-7

  • Online ISBN: 978-3-0348-8753-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics