Skip to main content

Mathematical Aspects of Numerical Solution of Hyperbolic Systems

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 130))

Abstract

A number of physical phenomena are described by nonlinear hyperbolic equations. Presence of discontinuous solutions motivates the necessity of development of reliable numerical methods based on the fundamental mathematical properties of hyperbolic systems. Construction of such methods for systems more complicated than the Euler gas dynamic equations requires the investigation of existence and uniqueness of the self-similar solutions to be used in the development of discontinuity-capturing high-resolution numerical methods. This frequently necessitates the study of the behavior of discontinuities under vanishing viscosity and dispersion. We discuss these problems in the application to the magnetohydrodynamic equations, nonlinear waves in elastic media, and electromagnetic wave propagation in magnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aslan, Numerical solution of one-dimensional MHD equations by a fluctuation approach, Int. J. Numer. Meth. Fluids., 22 (1996), 569–580.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. J. Galin, Theory of shock waves, Sov. Phys. Dokl., 4 (1959), 757–760.

    MathSciNet  MATH  Google Scholar 

  3. A. A. Barmin and A. G. Kilikovskii,Ionization and recombination fronts in electromagnetic field, in Science Surveys, 5 (1971), 5–31, VINITI, Moscow [in Russian].

    Google Scholar 

  4. A. A. Barmin and A. G. Kulikovskii, The piston problem in the presence of recombination waves in a magnetic field, Fluid Dyn., 10 (1975), 653–658 [English translation].

    Article  Google Scholar 

  5. A. A. Barmin and V. S. Uspenskii, Development of the pulsation regimes in one-dimensional nonstationary MHD flows with the electrical conductivity switch-on, Fluid Dyn., 26 (1986), 115–122 [English translation].

    Google Scholar 

  6. A. A. Barmin, A. G. Kulikovskiy, and N. V. Pogorelov, Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics, J. Comput. Phys., 126 (1996), 77–90.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Brio and C. C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75 (1988), 400–422.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. P. Chugainova, Emergence of nonlinear waves under action of a sudden change of the load at the boundary, Mechanics of Solids, 25 (1990), 204–206 [English translation].

    Google Scholar 

  9. W. Dai and P.R. Woodward, Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics, J. Comput. Phys., 115 (1994), 485–514.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. I. Gvozdovskaya and A. G. Kulikovskii, Electromagnetic shock waves in anisotropic magnetic materials and their structure, Appl. Math. Mech. [PMM], 61 (1997), 135–143 [English translation].

    Google Scholar 

  11. N. I. Gvozdovskaya and A. G. Kulikovskii, On the influence of the dispersion on the set of admissible shocks in mechanics of continuous media, Proc. Steklov Inst. of Math. (to appear).

    Google Scholar 

  12. T. Hanawa, Y. Nakajima, and K. Kobuta, Extensions of Roe’s solver to general equation of state and magnetohydrodynamics, Dept. of Astrophysics Nagoya University Preprint No. DPNU 94–34 (1994).

    Google Scholar 

  13. A. G. Kulikovskii, Surfaces of discontinuity separating two perfect media with different properties, Appl. Math. Mech. [PMM], 32 (1968), 1125–1131 [English translation]

    Google Scholar 

  14. A. G. Kulikovskii, Strong discontinuities in flows of continuous media and their structure, Publ. Steklov Inst. Math., No. 1, 285–317 (1990).

    Google Scholar 

  15. A. G. Kulikovskii, The possible effects of oscillations in the discontinuity structure on the set of admissible discontinuities, Dokl. AN SSSR, 275 (1984), 1349–1352, English translation in Sov. Phys. Dokl., 29 (1984).

    Google Scholar 

  16. A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, (1965), Addison-Wesley, Reading, MA.

    Google Scholar 

  17. A. G. Kulikovskii and E. Sveshnikova, Nonlinear Waves in Elastic Media, (1995), CRC, New York.

    MATH  Google Scholar 

  18. N. V. Pogorelov, A. A. Barmin, A G Kulikovskiy, and A. Yu. Semenov, Approximate Riemann solvers and valid solutions of MHD calculations, in Collection of Papers, 6th International Conference on Computational Fluid Dynamics (Lake Tahoe, USA, September 5–9, 1995) 2 (1995), 952–955.

    Google Scholar 

  19. N. V. Pogorelov and A. Yu. Semenov, Peculiarities of numerical solution of magnetohydrodynamic equations, in Numerical Methods in Engineering’96 (Eds. J. A. Désidéri et al.) (1996), 1022–1027, John Wiley, Chichester.

    Google Scholar 

  20. N. V. Pogorelov and A. Yu. Semenov, A family of approximate solutions to the MHD Riemann problem retaining the shock relations, Comp. Math. Math. Phys., 36 (1997), 320–328 [English translation].

    MathSciNet  Google Scholar 

  21. N. V. Pogorelov and A. Yu. Semenov, Solar wind interaction with the magnetized interstellar medium: Shock-capturing modeling, Astron. Astrophys, 321 (1997), 330–337.

    Google Scholar 

  22. N. V. Pogorelov and T. Matsuda, Influence of the interstellar magnetic field direction on the shape of the global heliopause, J. Geophys. Res., 103 (1998), 237–245.

    Article  Google Scholar 

  23. K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), Report NM-R9407, Centrum voor Wiskunde en Informatica, Amsterdam (1994).

    Google Scholar 

  24. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), 357–372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y. (1999). Mathematical Aspects of Numerical Solution of Hyperbolic Systems. In: Jeltsch, R., Fey, M. (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 130. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8724-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8724-3_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9744-0

  • Online ISBN: 978-3-0348-8724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics