Skip to main content

Asymptotic behaviour for the porous medium equation posed in the whole space

  • Chapter
Nonlinear Evolution Equations and Related Topics

Abstract

This paper is devoted to present a detailed account of the asymptotic behaviour as t → ∞ of the solutions u(x, t) of the equation

$$ {u_{{t = }}}\Delta ({u^{m}}) $$
((0.1))

with exponent m > 1, a range in which it is known as the porous medium equation written here PME for short. The study extends the well-known theory of the classical heat equation (HE, the case m = 1) into a nonlinear situation, which needs a whole set of new tools. The space dimension can be any integer n ≥ 1. We will also present the extension of the results to exponents m < 1 (fast-diffusion equation, Fde). For definiteness we consider the Cauchy Problem posed in Q = ℝn x ℝ+ with initial data

$$ u(x,0) = {u_{0}}(x), x \in {\mathbb{R}^{n}} $$
((0.2))

chosen in a suitable class of functions. In most of the paper we concentrate on the class X 0 of integrable and nonnegative data,

$$ {u_{0}} \in {L^{1}}({\mathbb{R}^{n}}), {u_{0}} \geqslant 0, $$
((0.3))

which is natural on physical grounds as the density or concentration of a diffusion process, the height of a ground-water mound, or the temperature of a hot medium (see a comment on the applications at the end). Consequently, we will deal mostly with nonnegative solutions u(x, t) ≥ 0 defined in Q. An existence and uniqueness theory exists for this problem so that for every data uo we can produce an orbit {u(·,t):t > 0} which lives in L 1 (ℝn) ∩ L (ℝn) and describes the evolution of the process. The solution is not classical for m > 1, but it is proved that there exists a unique weak solution for all m > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alikakos, N. and Rostamian, R.Large time behavior of solutions of Neumann boundary value problem for the porous medium equationIndiana Univ. Math. J.30(1981), 749–785.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikakos, N. and Rostamian, R.On the umformization of the solutions of the porous medium equation in lEB 5Israel J. Math.47(1984), 270–290.

    MathSciNet  MATH  Google Scholar 

  3. Anoenent, S., Large-time asymptotics of the porous media equation.Nonlinear Diffusion Equations and their Equilibrium States 1W. -M. Ni, L. A. Peletier and J. Serrin eds., (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., Springer, New York, 12 (1988), 21–34.

    Chapter  Google Scholar 

  4. Aronson, D. G., “The Porous Medium Equation”Lecture Notes in Mathematics 1224.Springer-Verlag, Berlin/New York, 1985.

    Google Scholar 

  5. Aronson, D. G. and BénilanPIL Régularité des solutions de l’équation des milieux poreux dans leComptes Rendus Ac. Sci. Paris, A288(1979), 103–105.

    MATH  Google Scholar 

  6. Aronson, D. G. and Peletier, L. A.Large time behaviour of solutions of the porous medium equation in bounded domainsJ. Differ. Equat.39(1981), 378–412.

    Article  MathSciNet  MATH  Google Scholar 

  7. Aronson, D. G. and Vazquez. J. L.Eventual C -regularity and concavity offlows in one-dimensional porous mediaArchive Rat. Mech. Anal.99(1987), 329–348.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barenblatt, G. I.On some unsteady motions of a liquid or a gas in a porous mediumPrikl. Mat. Mekh.16(1952), 67–78 (in Russian).

    MathSciNet  MATH  Google Scholar 

  9. Barenblatt, G. I.Scaling self-similarity and intermediate asymptoticsCambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  10. Bénilan, Pli.Equations d’évolution dans un espace de Banach quelconque et applicationsPh. D. Thesis, Univ. Orsay, 1972 (in French).

    Google Scholar 

  11. Bénilan, PH.Opérateurs accrétifs et semi-groupes dans les espaces LP (1 < p <oo), France-Japan Seminar, Tokyo, 1976.

    Google Scholar 

  12. Bénilan, P., “A Strong RegularityLPfor Solutions of the Porous Media Equation,” Research Notes in Math., vol.8939–58, Pitman, London, 1983.

    Google Scholar 

  13. Bénilan, PH. and Crandall, M. G., The continuous dependence ongof solutions of \( {u_t} - \Delta \varphi \left( u \right) = 0\), Indiana Univ. Math. J.30(1981), 161–177.

    MATH  Google Scholar 

  14. Bénilan, PH. and Crandall, M. G., Regularizing effects of homogeneous evolution equations, inContributions to Analysis and Geometrysuppl. to Amer. Jour. Math., Baltimore, 1981,23–39.

    Google Scholar 

  15. Bénilan, PH., Crandall, M. G., and PAZY, A.Evolution Equations Governed by Accretive OperatorsBook to appear.

    Google Scholar 

  16. Bénilan, PH., Crandall, M. G., and Pierre, M.Solutions of the porous medium in \( {\mathbb{R}^N}\) under optimal conditions on the initial valuesIndiana Univ. Math. Jour.33(1984), 51–87.

    Article  MATH  Google Scholar 

  17. Bénilan, PH. and Vazquez, J. L.Concavity of solutions of the porous medium equationTrans. Amer. Math. Soc.199(1987), 81–93.

    Article  Google Scholar 

  18. Berms, F., Hulshof, J., Vazquez, J. L., Avery singular solution for the equation \( {z_t} = {\left| {{z_{xx}}} \right|^{m - 1}}{z_{xx}}\) and the asymptotic behaviour of general solutionsJ. Reine Ang. Math.435(1993), 1–31.

    Google Scholar 

  19. Boussinesq, J.Recherches théoriques sur l’écoulement des nappes d’eau infiltrés dans le sol et sur le débit de sourcesComptes Rendus Acad. Sci./J. Math. Pures Appl.10(1903/04), 5–78.

    Google Scholar 

  20. ] Brezis, H.“Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert”.North-Holland, 1973.

    Google Scholar 

  21. Blickmaster, J.Viscous sheets advancing over dry bedsJ. Fluid Mechanics81(1977), 735–756.

    Article  Google Scholar 

  22. Caffarelli, L. A. and Friedman, A.Continuity of the density of a gas flow in a porous mediumTrans. Amer. Math. Soc.252(1979), 99–113.

    Article  MathSciNet  MATH  Google Scholar 

  23. Caffarelli, L. A., J. L. V.Viscosity solutions for the porous medium equation.Proc. Symposia in Pure Mathematics65in honor of Profs. P. Lax and L. Nirenberg; M. Giaquinta et al. eds, 1999. pp. 13–26.

    Google Scholar 

  24. Caffarelli, L. A., Vazquez, J. L. and Wolanski, N. I., Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. Jour.36(1987), 373–401.

    Article  MathSciNet  MATH  Google Scholar 

  25. CArrillo, J. A. and Toscani, G.Asymptotic L I -decay of solutions of the porous medium equation to self-similarityIndiana Univ. Math. J. 49 (2000), 113–141.

    Article  MathSciNet  MATH  Google Scholar 

  26. CArrillo, J. A. JUNGEL, A. Markowich, P. A. and Toscani, G., UNTERREITER, A. Entropy dissipation methods for degenerate parabolic systems and generalized Sobolev inequalities, Monatsh. Math.133(2001), 1–82.

    Article  MathSciNet  MATH  Google Scholar 

  27. CArrillo, L. A., Vazquez, J. L.Fine Asymplotics for Fast Diffusion EquationsPreprint, 2002. Vol. 3, 2003 Asymptotic behaviour for the porous medium equation posed in the whole space 117

    Google Scholar 

  28. Chasseigne, E. and Vazquez, J. L.Extended theory of fast diffusion equations in optimal classes of data. Radiation from singularitiesArch. Rat. Mech. Anal., to appear.

    Google Scholar 

  29. Dibenedetto, E.Degenerate Parabolic EquationsSpringer Verlag, New York, 1993.

    Google Scholar 

  30. Dolbeault, J. and Del Pino, M.Best constants for Gagliardo-Nirenberg inequalities and application to nonlinear diffusionsPreprint Ceremade no. 0119; to appear in Journal Math. Pures Appl.

    Google Scholar 

  31. Dolbeault, J. and Del Pino, M.Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-LaplacianC. R. Math. Acad. Sci. Paris334(2002), no. 5, 365–370.

    Article  MathSciNet  MATH  Google Scholar 

  32. Esteban, J.R., Rodriguez, A. and Vazquez, J. L., Anonlinear heat equation with singular diffusivityCommun. Partial Differ. Equal.13(1988), 985–1039.

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedman, A. Kamin, S.The asymptotic behavior of gas in an N-dimensional porous mediumTrans. Amer. Math. Soc.262(1980), 551–563.

    MathSciNet  MATH  Google Scholar 

  34. Galaktionov, V. A. and Peletier, L. A.Asymptotic behaviour near finite time extinction for the fast diffusion equationArch. Rational Mech. Anal.139(1997), no. 1,83–98.

    Article  MathSciNet  MATH  Google Scholar 

  35. Galaktionov, V. A., Peletier, L. A. and Vazquez, J. L.Asymptotics of the fast-diffision equation with critical exponentSIAM J. Math. Anal.31(2000), no. 5, 1157–1174.

    Article  MathSciNet  MATH  Google Scholar 

  36. Galaktionov, V. A. and Vazquez, J. L.Geometrical Properties of the Solutions of One-dimensional Nonlinear Parabolic EquationsMathematische Annalen303(1995), 741–769.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gurtin, M. E. and McCamy, R. C.On the diffusion of biological populationsMath. Biosc.33(1977), 35–49.

    Article  MATH  Google Scholar 

  38. Kalashnikov, A. S., Some problems of the qualitative theory of nonàlinear degenerate second—order parabolic equations, Uspekhi Mat. Nauk42 (1987)No. 2, 135–176. English translation: Russian Math. Surveys42(1987), 169–222.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kamenomostskaya (Kamin), S.The asymptotic behaviour of the solution of the filtration equationIsrael J. Math.14(1973), 1, 76–87.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kamin (Kamenomostskaya), S., Similar solutions and the asymptotics of filtration equations, Arch. Rat. Mech. Anal.60(1976), 171–183.

    Article  Google Scholar 

  41. Kamin, S. Peletier, L. A. and Vazquez, J. L.On the Barenblatt equation of elastoplastic filtrationIndiana Univ. Math. Journal40(1991), no. 2,1333–1362.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kamin, S. and Vazquez, J. L.Fundamental solutions and asymptotic behaviour for the p-Laplacian equationRev. Mat. Iberoamericana4(1988), 339–354.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Kamin, J. L. VazquezAsymptotic behaviour of the solutions of the porous medium equation with changing signSIAM Jour. Math. Anal. 22 (1991), 34–45.

    Article  MathSciNet  MATH  Google Scholar 

  44. King, J.Self-similar behaviour for the equation of fast nonlinear diffusionPhil. Trans. Roy. Soc.London A343(1993), 337–375.

    Article  MATH  Google Scholar 

  45. LADYZHENSKAYA, O. A., SOLONNIKOV, V. A. and Ural’tseva, N. N.Linear and Quasilinear Equa- tions of Parabolic TypeTransi. Math. Monographs 23, Amer. Math. Soc, Providence, 1968.

    Google Scholar 

  46. Lasalle, J. P.The Stability of Dynamical SystemsSIAM, Philadelphia, PA, 1976.

    Book  Google Scholar 

  47. Lee, K. A. and Vazquez, J. L.Geometrical properties of solutions of the Porous Medium Equation for large timesIndiana Univ. Math. J., to appear.

    Google Scholar 

  48. Matano, H.Nonincrease of the lap number of a solution of a one-dimensional semi-linear parabolic equationJ. Fac. Sci. Univ. Tokyo, Sect. IA 29 (1982), 401–441.

    MathSciNet  MATH  Google Scholar 

  49. Muskat, M.The Flow of Homogeneous Fluids Through Porous MediaMcGraw-Hill, New York, 1937.

    MATH  Google Scholar 

  50. Newman, W., ALyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. 17. Math. Phys.25(1984), 3120–3123.

    Article  MathSciNet  MATH  Google Scholar 

  51. O. Oleinik, Kalaslmkov, S. A. and Czhou, Y. L.The Cauchy problem and boundary-value problems for equations of the type of unsteady filtrationIzv. Akad. Nauk SSSR, Ser. Mat.22(1958), 667–704.

    MathSciNet  MATH  Google Scholar 

  52. Ono, F. The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations26(2001), 101–174.

    Article  MathSciNet  Google Scholar 

  53. Pattle, R. E.Diffusion from an instantaneous point source with concentration dependent coefficientQuart. Jour. Mech. Appl. Math.12(1959), 407–409.

    Article  MathSciNet  MATH  Google Scholar 

  54. Peletier, L. A., The Porous Medium Equation inApplications of Nonlinear Analysis in the Physical Sciences“H. Amann et al. eds., Pitman, London, 1981, 229–241.

    Google Scholar 

  55. Pierre, M., Uniqueness of the solutions of \( {u_t} - \Delta \phi \left( u \right) = 0\) with initial datum a measure, Nonlinear Anal. T. M. A. 6 (1982), 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  56. Del Pino, M. and Saez, M.On the Extinction Profile for Solutions ofIndiana Univ. Math. Journal50(2001), no. 2, 612–628.

    Google Scholar 

  57. Quires, F. and Vazquez, J. L.Asymptotic behaviour of the porous media equation in an exterior domainAnn. Scuola Normale Sup. Pisa28(1999), 4, 183–227.

    Google Scholar 

  58. Ralston, J., ALyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. IIJ. Math. Phys.25(1984), 3124–3127.

    Article  MathSciNet  MATH  Google Scholar 

  59. Rodriguez, A. and Vazquez, J. L., Awell-posed problem in singular Fickian diffusionArchive Rat. Mech. Anal.110(1990), 2, 141–163.

    Article  MathSciNet  MATH  Google Scholar 

  60. Sacks, P.Continuity of the solutions of a singular parabolic equationNonlin. Anal. T.M.A. 7 (1983), 387–409.

    Article  MathSciNet  MATH  Google Scholar 

  61. STURM, C.Mémoire sur une classe d’équations à différences partiellesJ. Math. Pure ApptI(1836), 373–444.

    Google Scholar 

  62. ] Samarskii, A. A., Galaktionov, KURDYUMOV, S. P. and MIKHAILOV, A. P.Blow-up in Quasilinear Parabolic EquationsNauka, Moscow, 1987 (in Russian); English translation: Walter de Gruyter19Berlin/New York, 1995.

    Google Scholar 

  63. ] Vazquez, J. L.Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous mediumTrans. Amer. Math. Soc. 277 (1983), 507–527.

    Article  MathSciNet  MATH  Google Scholar 

  64. ] Vazquez, J. L.Behaviour of the velocity of one-dimensional flows in porous mediaTrans. Amer. Math. Soc.286(1984), 787–802.

    Article  MathSciNet  MATH  Google Scholar 

  65. Vazquez, J. L.Symétrisation pour \( {u_t} = \Delta \not o(u) \) et applications, Comptes Rendus Acad. Sci. ParisI 295(1982), 71–74.

    Google Scholar 

  66. ] Vazquez, J. L.An Introduction to the Mathematical Theory of the Porous Medium Equation.InShape Optimization and Free BoundariesM. C. Delfour ed., Mathematical and Physical Sciences, SeriesCvol.380Kluwer Ac. Publ.; Dordrecht, Boston and Leiden; 1992. Pages 347–389.

    Chapter  Google Scholar 

  67. Vazquez, J.L., “Asymptotic behaviour for the PME in a bounded domain. The Dirichlet problem”, and “Asymptotic behaviour for the PME in the whole space”Notes of the Ph. D. Course “Métodos AsintÓticos en Ecuaciones de EvoluciÓn”UAM, spring 1997http://www.uam.esrjuanluis.Vazquez.

    Google Scholar 

  68. Vazquez, J. L. and Zuazua, E.Complexity of large time behaviour of evolution equations with bounded dataChinese Annals of Mathematics, 23, 2, ser. B (2002), 293–310. Volume in honor of J.L. Lions.

    Article  MathSciNet  MATH  Google Scholar 

  69. ]VÉron, L.Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de BanachAnn. Fac. Sci. Toulouse1(1979), 171–200.

    Article  MATH  Google Scholar 

  70. ZHUOQUN Wu, Jingkue Yin, Huilai LI, JUNNtNG ZHAONonlinear diffusion equationsWorld Scien-tific, Singapore, 2001.

    Google Scholar 

  71. ]Zel’Dovich, YA. B. and Barenlatt, G. I.The asymptotic properties of self-modelling solutions of the nonstationary gas filtration equationsSoviet Phys. Doklady 3 (1958), 44–47 [Russian, Akad. Nauk SSSR, Doklady118(1958), 671–674].

    Google Scholar 

  72. ] Zel’Dovich, YA. B. and KOMPANEETS, A. S.Towards a theory of heat conduction with thermal conductivity depending on the temperature.In“Collection of papers dedicated to 70th Anniversary of A. F. Joffe”Izd. Akad. Nauk SSSR, Moscow, 1950,61–72.

    Google Scholar 

  73. Zel’Dovich, YA. B. and RAIZER, YU. P.Physics of Shock Waves and High-Temperature Hydrodynamic

    Google Scholar 

  74. PhenomenaII, Academic Press, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dédié à la mémoire de Philippe Bénilanami et maître

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Vázquez, J.L. (2003). Asymptotic behaviour for the porous medium equation posed in the whole space. In: Arendt, W., Brézis, H., Pierre, M. (eds) Nonlinear Evolution Equations and Related Topics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7924-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7924-8_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7107-4

  • Online ISBN: 978-3-0348-7924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics