Skip to main content

Stick Slip, Charge Separation and Decay

  • Chapter
Friction and Faulting

Abstract

Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arulanandan, K. and Mitchell, J. (1968), Low frequency dielectric dispersion of clay-water-electrolyte systems. Clays Clay Min. 16, 337–351.

    Article  Google Scholar 

  • Bertin, J. and Loeb, J., Experimental and Theoretical Aspects of Induced Polarization. 2 vol., Gebruder Borntraeger, Berlin, 1976.

    Google Scholar 

  • Dieterich, J. H. (1972). Time-dependent friction in rocks. J. Geophys. Res. 77, 3690–3697.

    Article  Google Scholar 

  • Fitterman, D. V. (1979), Theory of electrokinetic-magnetic anomalies in a faulted half-space. J. Geophys. Res. 84, 6031–6040.

    Article  Google Scholar 

  • Howell, B. F. and Licastro, P. H. (1961), Dielectric behavior of rocks and minerals. Amer. Miner. 46, 269–288.

    Google Scholar 

  • Kuksenko, V. S., Kilkeev, R. S. and Mizoshnichenko, M. I. (1981), On interpretation of electrical precursors of earthquakes. Doklady Akad. Nauk 260 (no. 4) 841, U.S.S.R.

    Google Scholar 

  • Lockhart, N. C. (1980a), Electrical properties and the surface characteristics and structure of clays. I: Swelling clays. J. Colloid Interface Sci. 74, 509–519.

    Article  Google Scholar 

  • Lockhart, N. C. (1980b), Electrical properties and the surface characteristics and structure of clays. II: Kaolinite—A nonswelling clay. J. Colloid Interface Sci. 74, 520–529.

    Article  Google Scholar 

  • Lockner, D. A. and Byerlee, J. D. (1985a), Complex resistivity of fault gouge and its significance for earthquake lights and induced polarization. Geophys. Res. Lett. 12, 211–214.

    Article  Google Scholar 

  • Lockner, D. A. and Byerlee, J. D. (1985b), Complex resistivity measurements of confined rock. J. Geophys. Res. 90, 7837–7847.

    Article  Google Scholar 

  • Lockner, D. A., Johnston, M. J. S. and Byerlee, J. D. (1983), A mechanism to explain the generation of earthquake lights. Nature, 302, 28–33.

    Article  Google Scholar 

  • Madden, T. and Cantwell, R. (1967), Induced polarization: A review. Min. Geophys. 2, 373–400.

    Google Scholar 

  • Madden, T. and Williams, E., ‘Possible mechanism for stress associated with electrostatic effects,’ in Abnormal Animal Behavior Prior to Earthquakes. I (ed. J. Evernden), U.S. Geol. Surv., Menlo Park, California, 1976.

    Google Scholar 

  • Nelson, P., Hansen, W. and Sweeney, M. (1982). Induced-polarization response of zeolitic conglomerate and carbonaceous silts tone. Geophys. 47, 71–88.

    Article  Google Scholar 

  • Nelson, P. and Van Voorhis, G. (1983), Estimation of sulfide content from induced polarization data. Geophys. 48, 62–75.

    Article  Google Scholar 

  • Olhoeft, G. (1979), Tables of room temperature electrical properties for selected rocks and minerals with dielectric permittivity statistics. Open File Rept. 79–993, U.S. Geol. Surv., 22 p.

    Google Scholar 

  • Pounder, C. (1984), Solution contact charging with respect to earthquake lights. Nature 307, 389.

    Article  Google Scholar 

  • Saint-Amant, M. and Strangway, D. W. (1970), Dielectric properties of dry, geological materials. Geophys. 35, 624–645.

    Article  Google Scholar 

  • Schlumberger, C., Etude sur la prospection électrique du sous-sol. Gauthier-Villars, Paris, 1920.

    Google Scholar 

  • Scott, J. H., Carroll, R. D. and Cunningham, D. R. (1967), Dielectric constant and electrical conductivity measurements of moist rock: A new laboratory method, Geophys. 72, 5101–5115.

    Article  Google Scholar 

  • Shahidi, M., Hasted, J. B. and Jonscher, A. K. (1975), Electrical properties of dry and humid sand. Nature 258, 596–597.

    Article  Google Scholar 

  • Sobolev, G. A., Semerchan, A. A., Salov, B. G., Spetzler, H. A., Sondergeld, K. H., Badanol, V. N., Koltsov, A. V., Los, V. F., Nasimov, R. M., Ponomarev, A. V., Stakhovski, I. R., Terentev, V. A. and Turetski, I. M. (1982), Precursors of failure of large scale rock sample. Izvestia Akad. Nauk U.S.S.R., Fizika Zemli, no. 8, 29–44.

    Google Scholar 

  • Sumi, F. (1961), The induced polarization method in ore investigation. Geophys. Prosp. 19, 459–477.

    Article  Google Scholar 

  • Tuck, G. J., Stacey, F. D. and Starkey, J. (1977), A search for the piezoelectric effect in quartz-bearing rocks. Tectonophys. 39, T7–T11.

    Article  Google Scholar 

  • Vacquier, V., Holmes, C. R., Kintzinger, P. R., and Lavergne, M. (1957), Prospecting for ground water by induced electrical polarization. Geophys. 22, 660–687.

    Article  Google Scholar 

  • Wait, J. (1958), Discussions on ‘a theoretical study of induced electrical polarization.’ Geophys. 23, 144–153.

    Article  Google Scholar 

  • Wait, J., Overvoltage Research and Geophysical Applications, Pergamon Press, New York, 1959.

    Google Scholar 

  • Wong, J. (1979), An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores. Geophys. 44, 1245–1265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Basel AG

About this chapter

Cite this chapter

Lockner, D.A., Byerlee, J.D., Kuksenko, V.S., Ponomarev, A.V. (1986). Stick Slip, Charge Separation and Decay. In: Tullis, T.E. (eds) Friction and Faulting. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6601-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6601-9_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1862-8

  • Online ISBN: 978-3-0348-6601-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics