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Abstract. Detection of unknown attacks is challenging due to the lack
of exemplary attack vectors. However, previously unknown attacks are a
significant danger for systems due to a lack of tools for protecting systems
against them, especially in fast-evolving Internet of Things (IoT) tech-
nology. The most widely used approach for malicious behaviour of the
monitored system is detecting anomalies. The vicious behaviour might
result from an attack (both known and unknown) or accidental break-
down. We present a Net Anomaly Detector (NAD) system that uses
one-class classification Machine Learning techniques to detect anomalies
in the network traffic. The highly modular architecture allows the system
to be expanded with adapters for various types of networks. We propose
and discuss multiple approaches for increasing detection quality and eas-
ing the component deployment in unknown networks by known attacks
emulation, exhaustive feature extraction, hyperparameter tuning, detec-
tion threshold adaptation and ensemble models strategies. Furthermore,
we present both centralized and decentralized deployment schemes and
present preliminary results of experiments for the TCP/IP network traf-
fic conducted on the CIC-IDS2017 dataset.

Keywords: Anomaly detection · Machine learning · One-class
classification · IoT networks · LoRaWAN security

1 Introduction

According to the current report [1] attacks against corporate networks increases
each year. Only in 2021 did the annual number of such attacks rise by 50%. The
rapid development of IoT systems is conducive to new unknown attacks. Those
unknown attacks are a significant danger for systems due to standard signature-
based intrusion detection systems’ ineffectiveness for protecting systems against
them. Thus, anomaly detection is a commonly used solution to detect malicious
behaviour in network traffic [4]. The anomaly in network traffic might result
from an attack (both known and unknown) or accidental breakdown.

Distinguishing between normal and abnormal behaviour is difficult due to
irregularity of users and external systems behaviour (e.g. different frequency of
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visiting websites depending on the time of day and marketing campaigns). As
a result, detecting anomalies is usually a trade-off between accepting significant
irregularities that might result from attack (false-negative errors) and frequent
reporting of alarms in situations where the system is working correctly (false-
positive errors).

Applying machine learning (ML) to detect anomalies in extensive data set is a
well-established approach [18]. At the same time, according to the recent review
on anomaly detection [21], cybersecurity is currently one of the most popular
fields for applying anomaly detection. When considering anomaly detection, the
two types of tasks must be distinguished—outlier detection [10] and novelty
detection [23]. In the outlier detection task, the anomaly (i.e. outlier—an object
that differs much from the others) is included in the training data. The task
objective is to find the most deviant objects in the set. The outlier detection
is unsupervised learning due to the lack of labels in the training set. In novelty
detection, the training set contains normal (correct, benign) objects only. The
task objective is to find anomalies (i.e. novelties—the objects that differ much
from those observed before) in the new data. Anomaly detection is considered a
semi-supervised learning task as the elements in the training set contain labelled
data, but there are no outliers. In the context of ML algorithms applicable for
both tasks, the main difference is related to data distribution. In the outlier
detection, abnormal objects do not form a dense group (otherwise, those objects
are not considered outliers). In contrast, in novelty detection, abnormal objects
can form such groups (e.g. samples recorded based on the network traffic during
one specific attack).

In this work, we present Net Anomaly Detector (NAD) – the component
designed to detect unknown attacks by recognising the network traffic novelties.
The NAD module records regular traffic of the system and creates multiple mod-
els of normal traffic in the system using ML algorithms. Then module selects
the model with the best performance according to the given criteria or combines
models with one of the proposed strategies (i.e. ensemble model) and detect
anomalies in network traffic using the selected model. The selected base approach
is well established and widely used. Thus, we focused on the several features to
increase robustness and ease both the deployment of the component in unknown
networks and extending the module in the future—known attacks emulation,
exhaustive features extraction, hyperparameter tuning, an adaptation of detec-
tion threshold and ensemble models strategies. The highly modular architecture
allows the system to be expanded with adapters for various types of networks.
Additionally, we propose three different component deployment schemes that
differ in the level of decentralisation. One of the schemes was used in the actual
testbed deployment within GUARD project1.

1 GUARD is a project co-funded within Horizon 2020 Funding Programme. The
project aims to provide a cybersecurity framework to guarantee reliability and trust
for digital service chains. More information can be found on the project website:
https://guard-project.eu/.

https://guard-project.eu/
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The chapter is organized as follows. First, we discuss the application of
machine learning for novelty detection within the NAD component. Then mod-
ular architecture of the NAD component is presented—main modules, variants
of component deployment scheme and an exemplary deployment within the
GUARD project. Finally, selected results of the experiments conducted on the
CIC-IDS2017 dataset are presented.

2 Anomaly Detection with Machine Learning

The main aim of using the NAD component is to define the characteristics of the
monitored network traffic, which should allow traffic anomalies detection with
reasonably high quality (i.e. both low false-positive (FP) and false-negative (FN)
rates). Machine learning is used to create a model of benign network traffic. The
result of the learning phase is a model of initial network traffic. The model is used
to validate new traffic in real-time—NAD checks whether online traffic fits the
created model (i.e. if the traffic does not deviate from benign traffic too much).
NAD activates anomaly alert if an outlier in traffic characteristic is detected.

2.1 Machine Learning Methods

The network traffic monitored in a specified location can be defined as a set
of consecutive network messages recorded at that point. Timestamp of creation
or registering can be assigned to each message. The set of messages can be
divided into separate subsets according to some criteria (e.g. into time windows
or by address of the sending device). The raw traffic needs to be converted into
numeric vectors (a features extraction phase), each one representing a single
set of messages. Vectors representing sets of messages recorded during regular
(normal, benign, not malformed) system operation are used to create a model of
the regular network traffic. The traffic (converted to numeric vectors) that does
not match the network model is recognised as an anomaly.

As pointed out, the anomaly detection considered in this work is of the nov-
elty detection type. Thus to train the model, only benign traffic is required.
However, in our approach, abnormal traffic samples are also needed to validate
models. If abnormal traffic is not available or cannot be produced in the moni-
tored network, the NAD emulation module can be used to generate such traffic.

Training model with samples of one class only is known as One-Class Classi-
fication (OOC) [20]. The following ML-based classifiers have been implemented
in NAD for solving OOC problems:

– One-Class SVM [30]—version of Support Vector Machine method [13], which
builds a hyperplane that separates all or most input data points (representing
regular traffic) from the origin (instead of the second class).

– Autoencoder [12]—the type of artificial neural network that can encode input
vector and then decode the encoded input vector to get the original value.
The autoencoder is built on data points representing regular traffic only.
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Hence, only such data points can be encoded and decoded correctly. Other
data points representing abnormal traffic after encoding and decoding are not
similar to the original values.

– Variational Autoencoder [6]—the type of autoencoder which, instead of con-
structing latent space explicitly, first learns how to generate distribution
depending on input sample (encoder part). The distribution is used to sam-
ple latent variable that is then used to reconstruct the input sample (decoder
part).

– Local Outlier Factor [11]—to detect anomaly density of training samples
around the evaluated sample is calculated and compared with the density
of the given number of neighbours. If the density of the evaluated sample is
significantly lower than the one of neighbours, then the sample is considered
an anomaly.

– Clustering [5]—the input data are divided into one or more clusters (e.g. if
network traffic varies at a different time of day). Each cluster is described
with mean and radius. If a new data point does not belong to any cluster, it
is identified as an anomaly. In most cases, the number of clusters that input
data should be divided is unknown. Hence, using clustering methods that
do not require an expected number of clusters as an input (e.g. model-based
clustering based on finite Gaussian mixture modelling) or simple clustering
(e.g. k-means) combined with the elbow method for the best number of cluster
detection should be used.

The features selection in OCC problems is challenging due to lack of mali-
cious samples in the training set—it is hard to predict which features will infer
the presence of an anomaly. The optimal features set for detecting an attack may
depend strongly on the attack type. Hence, the feature selection phase can be
omitted in the case of machine learning methods that cope well with high dimen-
sional data. However, this is not the case for all methods, e.g. One-Class SVM.
Hence, the following methods were implemented in the NAD for extraction:

– Principal component analysis (PCA) [22]—a dimensionality reduction
method, which performs orthogonal linear transformation to transform a set
of features to a set of new features. The objective of the change is to keep
the maximum possible variance of data while reducing the cardinality of the
features set.

– Simple measures selection—a bunch of simple statistical measures are used
to rank all features, and the defined number of best features is selected. The
following measures were considered: kurtosis, Laplacian score [16], variance,
Spectral score [19], the mean distance between points and centroid, inter-
cluster distance, inter-quartile range. Following rank aggregation methods
for combining rankings acquired by each measure were examined: average,
Borda [29] and Dowdall [24].

– Static selection—features are filtered based on a predefined list of feature
names to include or exclude.
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– Pipeline—the features selection methods proposed above can be combined to
create a pipeline, i.e. features set is reduced by each method, and the result
is forwarded as the input to the consecutive method.

It could be argued that since malformed traffic is available during the training
phase, the problem of attack detection could be considered as the outlier detec-
tion problem. However, the malicious traffic samples potentially form dense areas
(e.g. traffic originating from one specific type of attack). Additionally, in prac-
tice, the traffic recorded in the network that is not under attack may contain
contamination forming sparse areas. Such elements may result from, i.a. untyp-
ical user behaviour (but not malicious). We would call them semi-outliers since
they are outliers from the perspective of the machine learning methods, but on
the other hand, they are benign from the perspective of network security. How-
ever, in the case of binary classification, due to the infrequency and irregularity
of those samples, they could be marked as anomalies with a greater probability
than emulated malformed traffic injected into the training set.

Semi-outliers cause problems in novelty detection as well. ML algorithms tend
to mark those samples as anomalies. Thus, reducing the high false-positive errors
rate is one of the biggest challenges in anomaly detection in network traffic. The
trade-off between false positive and false negative rates can be controlled with
the decision threshold parameter.

2.2 Attack Emulation

Lack of malicious data in the training dataset causes problems with models
evaluation and comparison, as detection quality for malicious samples cannot be
evaluated. Thus, to overcome those problems, we used simulation techniques to
implement attacks emulation. The attack emulation module is responsible for
the artificial malformation of the network traffic. The result of the emulation is
abnormal traffic that is further used to:

– Tune models hyperparameters,
– Adjust the detection threshold value,
– Compare models.

It needs to be highlighted that applying emulated malicious traffic has drawbacks
as well—if the unknown attack is not similar to the ones emulated, it still can
be missed by the anomaly detector. Thus emulation attacks should be diverse
and representative.

2.3 Adjusting Detection Threshold

The OCC methods create a model of benign traffic. This model is then used
to evaluate how well the newly monitored traffic fits the model. The evaluation
result can be binary (does or does not fit) or numeric (i.e. score value). The
score interpretation differs depending on algorithm type, but generally, it can
be interpreted as the indicator of how much the evaluated sample differs from
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the normal sample. Binary decision mode is the default behaviour and is based
on the threshold. The OCC method calculates the threshold value based on the
training data. However, in the case of novelty detection, the OCC method has
to guess what threshold will be optimal for detecting anomalies caused by future
cyberattacks. In practice, the OCC method calculates some statistical measures
for training data to decide how much of that data is abnormal. Such an approach
is justified as training data may contain anomalies originating from other sources
(more or less similar to the anomalies created by attacks). However, data with
anomalies originating from some cyberattacks (real or emulated) within the NAD
system is available. Even though such anomalies are mostly not identical to
those caused by unknown attacks, still they are potentially more similar than
anomalies caused by other sources. Thus those data can be used to support the
decision-making process. We decided to implement a mechanism that makes it
possible to use malicious data to adjust the classifier threshold value instead of
the default one. The benign and malicious traffic samples are scored using the
model in the adjusting threshold phase. For calculation of the optimal threshold
value of Youden’s J statistic [9] or fβ-score is used.

2.4 Ensemble Learning

When malicious traffic is available, the comparison of various algorithms and
parameters is possible. However, the quality of unknown attacks detection can-
not be predicted with high certainty. Moreover, models that proved to be of
lower quality during the validation phase may outperform better models when
new attacks occur. Therefore, we implemented in the NAD component several
ensemble techniques that increase the stability of detection quality for various
attacks. Ensemble learning is a technique to combine multiple models in one
compound detector [14]. Thus, in NAD, the outcome of building an anomaly
detector can be a bunch of base detectors—one detector for each user-defined
configuration space. With each base detector, the weight value is assigned. The
weight value is equal to the quality of the detector on the validation set, nor-
malised for all detectors. The creation of an ensemble detector can increase the
robustness of the detection. Four basic ensemble strategies were implemented in
NAD:

– Non-weighted voting (SV)—each base detector votes if the sample represents
an anomaly. The resulting score of the ensemble detector is the number of
positive votes divided by a number of base detectors.

– Weighted voting (WV)—each base detector votes if the sample represents an
anomaly. The resulting score of the ensemble detector is the sum of weights
of base detectors that voted for the anomaly existence.

– Non-weighted scoring (AS)—each base detector scores the sample. The result-
ing score of the ensemble detector is the average score of all scores.

– Weighted scoring (WS)—each base detector scores the sample. The resulting
score of the ensemble detector is a weighted average of all scores.
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The important aspect of the two last strategies was to ensure that each base
detector uses the same range of scores. Additionally, if two detectors assess the
possibility that the sample is an anomaly on a similar level, they should score
the sample with a similar value. Each base detector scores the samples with a
value from 0 to 1. The scaling factor is learned on the training set. The detection
threshold value is adjusted for each ensemble detector as for the base detector.

3 The NAD Architecture

The NAD component was designed as highly modular software. The architec-
tural model of NAD is presented in Fig. 1. High modularity eases maintaining
software and cross-team development in potential future applications of the NAD
component. Adding a new feature, e.g. new ML algorithm for building models,
requires only implementation of the specific interface and does not require any
knowledge about NAD. Additionally, in the process of component deployment,
the user’s role should be limited as much as possible, mainly to set system prop-
erties, which depend on the user’s preferences (e.g. sensitivity of the detection
algorithms) and to ensure normal behaviour of the monitored network and sys-
tem during the learning phase. This section briefly describes the main modules
of the component and possible deployment schemes.

3.1 Modules

According to the data flow within the component, the consecutively modules are
as follow:

Features Extraction. Feature extraction is an essential part of the learning
process. It transfers as many traffic characteristics as possible from raw traffic
logs to numerical vectors (features values). On the other hand, the NAD devel-
opment’s main goal was to automate the component deployment from the user
perspective, so feature extraction should be as a general process as possible. The
NAD component contains a special tool (i.e. extensive features extractor) that
makes implementing adaptors for any network type much more effortless.

The general concept of the feature extraction process is as follows. Let
us assume that there is a set of messages. Each message has some message
attributes (payload length, source IP address, gateway id, timestamp etc.). The
list of attributes depends on the network type. We define grouping opera-
tion as dividing a set of messages into disjunctive groups by some criteria—
grouping attributes (e.g. session-id divides traffic into TCP/IP flows, grouping
by timestamp range divides traffic into time windows). Grouping operation can
be hierarchical—set can be divided first by one grouping attribute (e.g. time)



90 M. Krzysztoń et al.

Fig. 1. The NAD modular architecture.

and then, e.g. into flows to obtain subgroups. When messages are grouped, each
group can be characterised by a set of group attributes. The group attribute
is a vector of values representing that group, e.g. intervals between consecutive
messages in the group or payload length of each message. If the group attribute is
not one of the message attributes (requires additional computation, e.g. intervals
mentioned above), such attribute is called derived attribute.
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As a result, each group is described with a set of vectors of different sizes,
which is, in most cases, inconvenient for effective traffic modelling with ML.
Hence, aggregation functions (e.g. sum, mean, max, min, skewness, etc.) are
introduced to reduce the size of data. Each attribute can be aggregated with
one or more functions. As a result of each aggregation, one value, called feature
value, is obtained. If more than one grouping operation was applied, more aggre-
gation operations also need to be involved (e.g. mean of means is calculated).
Summing up, a feature is defined as a tuple of one or more grouping opera-
tions, one attribute and aggregation functions (number of aggregating functions
is equal to the number of grouping operations). An exemplary feature definition
is (time, source IP address, payload length, mean, mean). All computed features
values create a vector that describes a set of messages used in further analysis.

Within the NAD component, versatile feature extraction [32] was imple-
mented. The core idea of such feature extraction is to generate as many features
as possible using many simple statistical measures as aggregation functions. The
solution proved to be successful in domains with little domain knowledge. Lit-
tle knowledge is also the case of unknown attack detection since it cannot be
predicted which statistical measure will best reflect anomaly in network traf-
fic during the specific attack. In NAD following aggregation functions were
introduced:

– The mean value
– The maximal value
– The minimal value
– The range (difference between the maximal and minimal values)
– The sum of squared values (mean power)
– The standard deviation
– Skewness
– Kurtosis
– The 5th central moment
– The maximal difference between two consecutive measurements
– Autocorrelation taken at t = 1, 2, 5, 20 and 50
– Count of the given value (e.g. TCP in case protocol field)

Attack Emulation. The traffic is malformed within the feature extractor mod-
ule: between raw traffic to standard format conversion and features extraction.
The attack emulator contains a library of attacks (the current list includes DDoS,
grayhole, replay, delay) and can be included in the new feature extractor “as it
is”. Each attack is configurable, e.g. intensity of the attack can be adjusted—
performing the same type of attack with various configuration increases the
quality of the abnormal dataset. Extending the library of attacks is possible if
the specific attack for the given network type should be implemented.
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Model Generator is the core component of NAD. The input data used in
the model generator is defined as a set of samples—each sample (e.g. the flow
in TCP/IP or traffic recorded in a time window) is represented by one vector.
Within the model generator few submodules exist:

– Features selection—submodule responsible for selecting the most promising
features of the network traffic (see Sect. 2.1).

– Model building—submodule responsible for building a model of the benign
network traffic, mainly with the use of Machine Learning (see Sect. 2.1).

– Hyperparameters tuning—within the NAD platform, the space of hyperpa-
rameters values can be defined by the user. There exists several strategies
for searching optimal set of hyperparameters values, e.g. grid search [26],
randomized [8] and gradient [7].

– Model selection—various techniques can be used to validate the model quality
and compare models to choose the most promising one. The exemplary of
commonly used techniques are k-fold, bootstrap and hold out [17]. It should
be stressed that in the NAD component, those techniques were modified due
to introducing abnormal samples only to the validation set.

– Ensemble strategies—submodule responsible for combining multiple models
into one to increase detection reliability (see Sect. 2.4).

Each submodule is easily extensible with new approaches.

Anomalies Detection. The model obtained from the model generator module
examines traffic in the monitored network. Before the examination, the traffic is
proceeded by the features extraction module mentioned above.

3.2 Deployment schemes

The high modularity of the architecture creates an opportunity to consider a
few possible schemes of component deployment. In this section, we discuss three
approaches (Fig. 2), but other variations are also possible.

Central Deployment (Fig. 2a). Network traffic is gathered in the edge device
(e.g. router or gateway) and sent to the central system, where all modules of
the NAD component are deployed. In this variant, resources of an edge device
are barely used, but network load between edge and central nodes can be high,
depending on the monitored network size and load.

Quasi-Central Deployment (Fig. 2b). The edge device is responsible not
only for gathering traffic but also for feature extraction. The feature vectors are
sent to the central node, and they’re used there to train the model and examine
new traffic. The network load is significantly lower than in the case of central
deployment, whereas computation performed by edge devices does not require
many resources. However, in the case of some resource-constrained devices, the
burden of performing feature extraction can be significant.
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Distributed Deployment (Fig. 2c). The edge device sends extracted features
vectors to the central system in the training phase. Then the central system com-
putes a model of the benign traffic and sends the model to the edge device. Then
an edge device can examine network traffic without sending any network data
outside of the system, which increases data safety. In this variant, the most
resource-demanding computations are performed in the central system. Check-
ing network traffic against the model of benign network traffic requires little
computation. The drawback of this scheme is a potentially higher vulnerability
for attacks, which use Adversarial Machine Learning techniques [15] due to a
more accessible model of the benign traffic model for the attacker.

The choice of deployment scheme depends on the type of monitored network,
resources available on the edge device, sensitivity of network data and risk of
attacks based on adversarial machine learning.

(a) A central deployment scheme (b) A quasi-central deployment scheme

(c) A distributed deployment scheme

Fig. 2. Data flows in various schemes of the NAD component deployment. The thick-
ness of the lines indicates the size of the data.

3.3 Integration with the Real Network Infrastructure

The NAD component was integrated and successfully deployed within the
GUARD project as one of the Security Services. GUARD is a cybersecurity
framework to guarantee reliability and trust for digital service chains. One of
the main goals of the GUARD structure is to improve the detection of attacks
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and the identification of new threats, which the NAD component fits into. Two
use cases were proposed as part of the project, and the appropriate testbeds
were implemented. The NAD component was used to monitor LoRaWAN [28]
network traffic within the use case related to the smart city [2]. In this use case,
the NAD component was successfully integrated with the testbed and the real
network deployed in Wolfsburg.

The GUARD framework architecture is presented in Fig. 3. The GUARD
agents are deployed in monitored system infrastructure. Their responsibility is
to gather security-related data from the monitored system and forward them to
the core platform. There multiple security services are deployed. One of them is
the NAD component. Due to GUARD framework architecture [3], the central-
ized variant of NAD deployment was chosen (Fig. 3). The component consumes
network traffic from the ChirpStack Forwarder agent, which collects traffic from
all LoRa gateways within the monitored system.

Fig. 3. GUARD architecture and data flow between GUARD components. With green
color NAD component is marked. Arrows depict data flow. (Color figure online)

4 Experiments

In this work to conduct experiments on unknown attacks detection, the NAD
component and the CIC-IDS2017 dataset [25] were used. This dataset contains
TCP/IP traffic represented as a set of flows. Each flow is labelled according
to the source—if it comes from a benign source or results from a malicious
connection. In this experiment, three types of DDoS attacks are included in
the validation set: DoS slowloris, DoS Slowhttptest and DoS Hulk. Only one
attack, DoS Goldeneye, was included in the test dataset. In the case of flows
analysis, anomaly detection aims not only to detect that the monitored network
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is under attack (which in the case of DDoS attack is an easy task) but also
to label flows responsible for the attack. As the model quality indicator and to
tune hyperparameters values, the area under the precision-recall curve (AUC-
PR) [27] measure was used. In the process of decision threshold adjustment, f0.5

score was used to provide higher weight to the precision of the model over recall
(in anomaly detection problems, the high false-positive rate is usually highly
undesirable)

4.1 Repeatability

The main goal of the NAD component is to select the best configuration accord-
ing to some given measure (AUC-PR in the case of experiments described in this
section). In this process, all checked configurations are ranked. The ranking pro-
cess needs to be characterised with high repeatability—the configurations should
be ranked in the same or very similar order each time the process is repeated,
independently on random factors (e.g. splitting the dataset into training, valida-
tion and testing sets). In this experiment k-fold approach, which is widely used in
the ML area to compare decision models, is examined. The k-fold is slightly mod-
ified in our system as validation data is extended with abnormal traffic, which
is not included in training data. Thus, some preliminary test of repeatability
was performed on the exemplary dataset—we checked how much the ranking
of configurations is similar within each configuration space. We selected five
configuration spaces:

– Static feature selection + Autoencoder (AE, 9 configurations)
– Static feature selection + Variantional Autoencoder (VarAE, 9 configura-

tions)
– PCA + SVM (PCA-SVM, 7 configurations)
– PCA + LOF (PCA-LOF, 42 configurations)
– Simple measures based feature selection + SVM (SM-SVM, 10 configurations)

The ranking method was applied three times on the same dataset (the learning
and validation sets varied due to random split). Rank-biased Overlap (RBO) [31]
measure was used to check the similarity of rankings. RBO measure can be
parametrised with p ∈ 〈0, 1〉 to determine the weight of the top ranks for the
value of the similarity measure—p = 1 means that all ranks have equal weight,
the smaller value of p the highest contribution of top ranks is. In the case of
our approach, the most important is the repeatability of choosing a few top
configurations (the best ones can be dropped due to instability; thus, the order
of the following configurations is also important). In Table 1 RBO for p = 1 and
p = 0.5 as well as standard deviation of APR AUC that determines the ranking
are presented.



96 M. Krzysztoń et al.

Table 1. Rank-biased Overlap of rankings obtained in three runs of the experiments
and standard deviation of APR AUC of all configurations in the given space.

Configuration space RBO (p = 1) RBO (p = 0.5) SDAUPRC

AE 0.61 0.38 0.004

VarAE 0.85 0.64 0.006

PCA-SVM 0.86 0.58 0.001

PCA-LOF 0.93 0.97 0.115

SM-SVM 0.95 0.99 0.057

Table 2. The confusion matrix for SM-SVM detector (results for one run only).

Predicted value

Negative Positive

Actual value Negative 0.64 0.006

Positive 0.58 0.001

In the case of PCA-LOF and SM-SVM, the repeatability is high. For the rest
configurations spaces, the repeatability of the process seemingly looks insuffi-
cient. However, the reason for low repeatability is a slight variance of the APR
AUC within each space—the quality of all configurations is comparable: thus,
even significant changes in ranking those configurations is irrelevant.

4.2 Unknown DoS Detection

The obtained base detectors (one for each configuration space) were examined
against the test set (benign traffic and DoS Goldeneye, which was not seen pre-
viously by the system). The experiment was repeated three times as before. The
f0.5-score value obtained by each base detector on the validation set (known
attacks) and the test set (unknown attack) is shown in Fig. 4. Firstly, it can be
observed that the quality of detection for the test set is lower (except SM-SVM).
The high standard deviation of PCA-SVM was caused by choosing another con-
figuration in one of three experiment runs. As expected, that configuration per-
formed well on the validation set (f0.5-score equal to 0.92), similarly to all other
configurations in this configuration space (see Table 1). However, surprisingly it
was significantly weaker on the test set (f0.5-score equal to 0.59).

The confusion matrix for the first run of the experiment for the SM-SVM
detector (the best detector according to the mean score) is presented in Table 2.
The frequency of raised alarms during the attack is much higher than when
the system operates in normal conditions, making detection that the monitored
system is under attack easy. Additionally, as intended, the FPR is relatively low.
However, in case of mitigation of the attack (e.g. by dropping the suspicious
traffic), the number of dropped benign connections may be unacceptable.
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Fig. 4. Average f0.5-score and standard deviation obtained by base detection models
for the validation set (in blue) and the test set (in orange). (Color figure online)

4.3 Ensemble Models

The weight of each base detector was calculated based on the value of the APR
AUC measure (see Table 3) obtained on the validation set. In each experiment
run, the PCA-SVM detector was recognized as the best detector (the highest
value of APR AUC on the validation set). The quality of all ensemble detectors
for the testing set is shown in Fig. 5. It can be observed that the high standard
deviation of the most significant detector (PCA-SVM) propagates on ensemble
detectors, except for the case of weighted voting strategy. In the case of all
assemble detectors, the standard deviation of the results is smaller than for the
PCA-SVM base detector. In this scenario, the weighted voting strategy proved
to be insensitive to the instability of base detectors, increasing the robustness of
the approach.

Table 3. Quality (APR AUC) and weight of base detectors obtained on the validation
set.

Base detector APR AUC Weight

Mean Standard deviation

AE 0.82 0.001 0.19

VarAE 0.81 0.002 0.19

PCA-SVM 0.92 0.007 0.22

PCA-LOF 0.80 0.007 0.19

SM-SVM 0.91 0.003 0.21
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Fig. 5. Base detectors weights (marked with orange), the mean and standard deviation
of base and ensemble detectors (marked with blue). (Color figure online)

4.4 Threshold Adjustment

The performance of each detector depends on how well the model evaluates the
anomaly level of the sample (scoring) and on the detection threshold value—the
minimal score value to assess the sample as an anomaly. The threshold in NAD is
calculated based on the validation set that contains initial traffic and exemplary
malicious traffic (originated from known attacks), which may be much different
from the malicious traffic in the test set (derived from unknown attacks). The
experiment aimed to check how much optimal threshold value acquired with
the validation set differs from the one calculated for the test set and how this
difference influences the model quality.

In our experiment, f0.5-score measure is used to calculate the optimal value of
the threshold. In Figs. 6 and 7, the precision-recall curves for the weighted votes
detector and Autoencoder detector for the test set are presented, respectively. In
both figures, green dots denote the optimal threshold values calculated for the
validation set, while red dots denote the optimal threshold values calculated for
the test set. Although the curves differ, their area is similar—the WV detector
performs better if a small recall is preferable, the AE in the opposite situation.
In the case of the WV detector, the value of the threshold obtained with the
validation set is close to the optimal value for the test set, which is a highly
desirable situation. In the case of the Autoencoder detector, the optimal value
of the threshold obtained with the validation set does not perform well in the
case of the test set. The AE model quality makes it possible to obtain f0.5-
score equal to 0.8 (if optimal threshold value could be calculated on the test
set). Thus, it may be concluded that the quality of the threshold adjustment
is mainly responsible for the poor detector performance on the test set (f0.5-
score equal to 0.55). On the other hand, the threshold adjustment mechanism
performs well for the WV detector and other ensemble detectors.
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Fig. 6. Precision recall curve for Weighted Votes detector for test set. Green dot denotes
the optimal threshold value calculated for the validation set, while red dote denotes
the optimal threshold value calculated for the test set. (Color figure online)

Fig. 7. Precision recall curve for Autoencoder detector for test set. Green dot denotes
the optimal threshold value calculated for the validation set, while red dote denotes
the optimal threshold value calculated for the test set. (Color figure online)
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5 Conclusions

In this chapter, we presented the Net Anomaly Detector component, which
is designed to detect anomalies in network traffic of various types using ML.
The component incorporates several mechanisms for increasing the quality of
unknown attack detection, i.e. known attacks emulation, exhaustive feature
extraction, hyperparameter tuning, detection threshold adaptation and ensem-
ble models strategies. The architecture of the component, its potential deploy-
ment variances and exemplary deployment within the GUARD framework were
presented. We showed that: the proposed hyperparameter tuning and modified
k-fold are characterised with acceptable repeatability; adjusting hyperparame-
ters values and detection threshold values with the use of dataset with samples
malformed with known attacks allows to detect of unknown attacks with high
quality; application of some ensemble strategies increase the robustness of the
anomalies detection. However, the presented results are preliminary and more
experiments on heterogeneous datasets are required.
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