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Chapter 13
Climate-Smart Forestry Case Study: Spain

Elena Górriz-Mifsud, Aitor Ameztegui, Jose Ramón González, 
and Antoni Trasobares

Abstract In Spain, 55% of land area is covered by forests and other woodlands. 
Broadleaves occupy a predominant position (56%), followed by conifers (37%) and 
mixed stands (7%). Forest are distributed among the Atlantic (north-western Iberian 
rim), Mediterranean (rest of the peninsula including the Balearic Islands) and 
Macaronesian (Canary Islands) climate zones. Spanish woodlands provide a multi-
plicity of provisioning ecosystem services, such as, wood, cork, pine nuts, mush-
rooms and truffles. In terms of habitat services, biodiversity is highly relevant. 
Cultural services are mainly recreational and tourism, the latter being a crucial eco-
nomic sector in Spain (including rural and ecotourism). Regulatory services, such 
as erosion control, water availability, flood and wildfire risk reduction, are of such 
great importance that related forest zoning and consequent legislation were estab-
lished already in the eighteenth century. Climate change in Southern Europe is fore-
cast to involve an increase in temperature, reduction in precipitation and increase in 
aridity. As a result, the risks for natural disturbances are expected to increase. Of 
these, forest fires usually have the greatest impact on ecosystems in Spain. In 
2010–2019, the average annual forest surface area affected by fire was 95,065 ha. 
The combination of extreme climatic conditions (drought, wind) and the large pro-
portion of unmanaged forests presents a big challenge for the future. Erosion is 
another relevant risk. In the case of fire, mitigation strategies should combine modi-
fication of the land use at the landscape level, in order to generate mosaics that will 
create barriers to the spread of large fires, along with stand-level prevention mea-
sures to either slow the spread of surface fires or, more importantly, impede the 
possibility of fire crowning or disrupt its spread. Similarly, forest management can 
play a major role in mitigating the impact of drought on a forest. According to the 
land use, land-use change and forestry (LULUCF) accounting, Spanish forests 
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absorbed 11% of the total greenhouse gas emissions in 2019. Investments in climate- 
smart forestry provide opportunities for using all the different parts of the Spanish 
forest-based sector for climate mitigation––forest sinks, the substitution of wood 
raw materials and products for fossil materials, and the storage of carbon in wood 
products. Moreover, this approach simultaneously helps to advance the adaptation 
of the forest to changing climate and to build forest resilience.

Keywords Mediterranean forest · Wildfires · Forest bioeconomy · Non-wood 
forest products · Resilient landscapes · Unmanaged forests

13.1  Introduction to Spanish Forests and Their Utilisation

As in many other southern European regions, the land cover of Spain has changed 
considerably in the last century. The abandonment of a substantial proportion of 
rural activities in the primary sector since the 1960s has led to a progressive, spon-
taneous afforestation of many parcels. Consequently, Spain today has 55% of its 
land area covered by forests and other woodlands (Ministerio para la Transición 
Ecológica [MITECO] 2018). Broadleaves occupy a predominant position (56%), 
followed by conifers (37%) and mixed stands (7%) (Fig.  13.1). The most wide-
spread forest formations are open forest (the dehesas), typically used for agrofor-
estry, followed by Mediterranean oak (chiefly Quercus ilex) and pine  

Fig. 13.1 Forest cover map of Spain. (Source: Ministerio de Medio Ambiente, Medio Rural y 
Marino, 2008)

E. Górriz-Mifsud et al.



213

(chiefly Aleppo pine). However, Pinus pinaster and Pinus sylvestris are the most 
important tree species in terms of timber volume. The rich ecosystem diversity is 
reflected in the more than 20 dominant tree species, which are distributed among the 
Atlantic (north-western Iberian rim), Mediterranean (rest of the peninsula including 
the Balearic Islands) and Macaronesian (Canary Islands) climate zones.

There is a large potential for increasing the use of domestic wood in Spain. Far 
from the typical European harvest rates, only one-third of the annual growing stock 
in Spain is harvested (Fig. 13.2) (Montero and Serrada 2013). While Spanish citi-
zens tend to only consume small amounts of wood (0.8 m3/inhabitant/year – about 
half that of Central Europe and well below what Northern European countries con-
sume), the aggregated annual timber consumption is almost double the domestic 
harvest. This means that, despite the available timber stock, over half of the demand 
needs to be covered by imported wood. The harvest intensity, however, varies con-
siderably among autonomous communities, ranging from 10 to 30% in most 
Mediterranean regions, up to 60–70% in the Atlantic northern and north-western 
regions (with a maximum of 88% in Galicia).

Highly fragmented private parcels constitute most of the forest land (MITECO 
2018), with more than 99% occupying less than 10 ha. Despite the clear manage-
ment challenges this situation implies, over 80% of the wood harvest takes place on 

Fig. 13.2 Key Spanish forest and forestry data. (Source: Author elaboration based on MITECO 
2018, Montero and Serrada 2013)
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privately owned land, indicating that most productive forests (Eucalyptus, Pinus 
radiata, both of which are introduced species) tend to be owned by family forest 
owners. Only 18% of the forested land is subject to a management plan 
(MITECO 2018).

Beyond timber and fuelwood, Spanish forests also produce relevant non-timber 
forest products such as cork, pine nuts, chestnuts, resin, black truffles and wild 
mushrooms. Their value and markets are often imperfectly captured by the trade 
statistics, as are other ecosystem services (e.g. biodiversity conservation, water pro-
vision, amenities, carbon sequestration). Of the Spanish forests, 41% are nature- 
protection areas.

13.2  Impacts of Climate Change in Spanish Forests

13.2.1  Climate Change and Spanish Forests

Climate change in Southern Europe, and in Catalonia (north-eastern Spain) in par-
ticular, is forecast to involve an increase in temperature, reduction in precipitation 
and increase in aridity. Based on recent forest simulation studies (Trasobares et al. 
2022; Morán-Ordóñez et al. 2020), the average annual mean temperature is pro-
jected to increase in Catalonia by 1.7–4.2 °C in this century, under Representative 
Concentration Pathways (RCPs) 4.5 and 8.5 (see Chap. 3). Consequently, climate 
change is expected to impact Spanish forests in several ways: (i) by decreasing 
water availability due to increased evapotranspiration due to the temperature 
increase; (ii) by increasing wildfire virulence as a result of reduced relative air 
humidity and increased wind speeds; (iii) by intensifying downpours, and increas-
ing torrentiality and erosion-risk, especially in south-eastern Iberia and the Canary 
Islands, intimately linked to desertification; (iv) by increasing the frequency of wind 
storms, with stronger winds causing structural tree damage; (v) by expanding pest 
and disease areas and/or active periods due to reduced cold weather; and (vi) by 
modifying the phenology and physiology of plants and animals, with additional 
effects on biomass growth (Serrada Hierro et al. 2011). Altogether, these impacts 
will likely affect the current composition of forest species, as well as the provision 
of ecosystem services, while increasing forest risks.

13.2.2  Forest Species Composition

Climate change projections predict a significant contraction of the distribution of 
most mesic species in the Iberian Peninsula by 2100, but for widespread species in 
the Mediterranean Basin, the impact will be lessened (Lloret et al. 2013). In the 
mid-term (by 2040), in monospecific Catalan forests (Gil-Tena et  al. 2019), a 
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temperature increase of 1.2 °C (with a concomitant reduction in precipitation) may 
entail risk for Pinus nigra, P. sylvestris, P. uncinata, Fagus sylvatica and Quercus 
pubescens, while other tree species, such as Pinus halepensis, may have a lower 
risk. Forest stands in wetter and mountainous climatic sub-regions will attract 
higher risk than drier sub-regions, where Pinus halepensis prevails. This climatic 
risk will endanger the stand suitability of tree species that are less tolerant of drought 
conditions (i.e. causing a shift in tree species) and/or that have lower growth rates 
and a greater vulnerability to biotic hazards. Tree species dynamics are already 
showing rapid species shifts from conifers towards broadleaves (Vayreda et  al. 
2016), partly due to climatic variation, but also due to the legacy of human land use, 
mainly agricultural abandonment and reduced forest management intensity (e.g. 
coppicing for fuelwood). In some areas, tree species that used to be secondary are 
starting to become predominant. These changes also have economic consequences 
because the tree species that are becoming more common tend to have lower eco-
nomic value in the markets.

13.2.3  Provisioning of Wood and Other Ecosystem Services

Spanish woodlands provide a multiplicity of ecosystem services (i.e. products), 
wood being the most relevant, followed by cork, pine nuts, mushrooms and truffles. 
In terms of habitat services, biodiversity is highly relevant. Cultural services are 
mainly recreational and tourism, the latter being a crucial economic sector in Spain 
(including rural and ecotourism). Regulatory services, such as erosion control, 
water availability, flood and wildfire risk reduction, are of such great importance 
that related forest zoning (Montes de Utilidad Pública) and consequent legislation 
were established as far back as the eighteenth century, and are still largely valid.

For some regions, in the short term, climate change may cause an increase in CO2 
sequestration and forest biomass productivity, such as in areas where water avail-
ability does not restrict growth, due to an increase in the vegetative period; this 
would benefit intensive silviculture (Serrada Hierro et al. 2011). On the other hand, 
a climate-sensitive forest scenario analysis conducted by Nabuurs et  al. (2018), 
Morán-Ordóñez et al. (2020) and Trasobares et al. (2022) in north-eastern Spain 
indicated that, for the business-as-usual (BAU) scenario, climate change is expected 
to lead to denser forests with smaller tree diameter sizes, higher mortality rates and 
lower volume growth, and with a significantly greater risk of forest fires (see below). 
Morán-Ordóñez et al. (2020) found that the RCP8.5 scenario resulted in a decrease 
in all ecosystem services for all pine forests. The use of a BAU scenario with low- 
intensity harvesting resulted in the greatest soil erosion mitigation and CO2storage, 
but predicted lower (blue) water provision. Pardos et al. (2017) determined that, for 
Scots pine and Pyrenean oak forests in Valsaín (central Spain), wood production 
would decrease from 2060 onwards using the BAU.  Nabuurs et  al. (2018) and 
Trasobares et al. (2022) showed that the balance in net carbon emissions (also tak-
ing into account the life span of wood products, the substitution of fossil-based 
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products, etc.) improved in management scenarios where climate-smart forestry 
and forest bioeconomy strategies were followed; that is, an increase in the managed 
area, improved silvicultural methods and incentivising the demand for construction 
timber in the medium term (2040–2050 onwards), with improved fire-risk preven-
tion, drought and blue water provision in the shorter term.

The environmental conditions for cork oak have been predicted to decrease mod-
erately in Andalucía under climate change. The risk will be more pronounced in the 
cork oaks planted in 1993–2000 as part of the EU’s Rural Development Programme 
because many of these forests are located outside the optimal locations for these 
trees (Duque-Lazo et al. 2018a). Wild mushroom productivity may also be highly 
climate-dependent, with the extension of summer-like weather into the fruiting sea-
son (i.e. autumn) expected to diminish production. Surprisingly, Karavani et  al. 
(2018a, b) predicted an increase in mushroom yield in pine forests in Catalonia 
under RCP4.5 and RCP8.5 during the twenty-first century. The autumn precipita-
tion and soil moisture are expected to remain more or less stable (or even to increase 
slightly) during the fruiting season in 2016–2100, although temperatures are 
expected to increase compared to 2008–2015. This would mean the mushroom 
fruiting season would extend towards winter. Herrero et al. (2019) found consistent 
wild mushroom yields for Pinus pinaster in Castilla-y-León. Truffle productivity is 
also expected to shift under climate change, leading to lower-market-value species 
(summer truffles) becoming dominant relative to the current situation (Büntgen 
et al. 2012). Thomas and Büntgen (2019) also predicted a reduction in black truffle 
productivity in Spain due to climate change. Under RCP4.5, there could be an 88% 
harvest reduction due to increased summer temperatures and a 15.6% harvest reduc-
tion due to reduced summer precipitation. Under RCP8.5, there would be a total 
collapse in production. These effects could be at least partially overcome by the 
increased use of irrigation in specialised plantations.

Under climate change, Pinus pinea forests would have reduced pine nut yields 
(Pardos et al. 2015). Given that these forests are typically managed for pine cone 
productivity, future scenarios call for combining pine nuts with timber production. 
In terms of resin, the impact of climate change is still uncertain due to a lack of 
impact studies. However, based on our current understanding, a reduction in the 
tapping season is expected during the warmest months (June–September) 
(Rodríguez-García et al. 2015). Similarly, in years with a rainy summer and/or dry 
spring, a slightly longer tapping season might result, as resin yield increases after 
such events.

13.3  Forest Disturbances

13.3.1  Wildfires

The risks for abiotic (forest fires, erosion, drought, storms, etc.) and biotic (insects, 
disease) natural disturbances are expected to increase due to climate change (e.g. 
Seidl et  al. 2014). Of these, forest fires usually have the greatest impact on 
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ecosystems in Spain. In 2010–2019, the average annual forest surface area affected 
by fire was 95,065 ha (MITECO 2021a). The combination of extreme climatic con-
ditions (drought, wind) and the large proportion of unmanaged forests presents a big 
challenge for the future. Erosion is another relevant risk. Most Spanish forests 
located on the steepest alpine and sub-alpine slopes are protected (Nabuurs 
et al. 2018).

Under climate change, extreme fire-weather conditions that can lead to large and 
catastrophic fires are expected to become more common (Piñol et al. 1998) as the 
number of extreme dry periods increases. Climate-change scenarios indicate an 
increase of 2–2.5 times the number of fires, 3.4–4.6 times the forest area burned, 
and 3–3.9 times the wooded area burned (Vázquez De La Cueva et al. 2012). An 
important aspect to consider is that the long-term impact on the vegetation or the 
adaptation of plants to fire does not depend on single events, but on fire regimes––
that is, the fire characteristics for a given area over a certain period (Krebs et al. 
2010). However, climate change is not the only factor that will modify the fire 
regimes on the Iberian Peninsula; other factors will define the size, frequency and/
or severity of the fires (Moreno et al. 2014). Moreover, changes in the fire activity 
have not been, and probably will not be, homogeneous over the Spanish territory. 
Past observations (Moreno et al. 2014) and future predictions (Jiménez-Ruano et al. 
2020) have indicated that, in north-eastern Spain, there has been a general increase 
in fire activity both over an entire year and during the vegetative season, although 
this tendency is expected to decrease in the medium term (2036). On the other hand, 
in Spain overall, there is a trend towards fewer wildfires with lower intensities, and 
a reduction in the area burnt (MAPA 2019). This decrease can be attributed to 
improvements in, and expenditure on, fire suppression over the last few decades. 
However, even though past observations and future forecasts seem relatively opti-
mistic, it is widely understood that the accumulation of fuel resulting from agricul-
tural abandonment (Pausas and Paula 2012), areas of past fire exclusion (Piñol et al. 
2005) and the expected increase in the number of days subject to extreme fire 
weather may lead to the unexpected occurrence of very large and catastrophic fires 
(Costa et al. 2011).

13.3.2  Water Scarcity and Drought

Interactions between the multiple drivers of global change can have diverse effects 
on the future condition of Mediterranean forests. Water scarcity will certainly be 
one of the most important agents of forest dynamics and their provision of services 
in the coming decades. The expected increase in evapotranspiration rates due to ris-
ing temperatures will come with a general reduction in water availability and greater 
precipitation irregularity, leading to more frequent, intense and prolonged droughts 
and hot spells. Many tree species in Spain will be particularly vulnerable to these 
events, including Pinus sylvestris, Fagus sylvatica and Abies alba. Decline in 
growth and increased die-back have already been reported in Pinus sylvestris 
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populations in north-eastern Spain (Martínez-Vilalta and Piñol 2002) and in the 
southernmost populations of Abies alba in the Spanish Pyrenees (Macias et  al. 
2006). However, this phenomenon will not only affect the least-tolerant species–
drought- adapted species are also likely to suffer the consequences of increased 
drought conditions. Drought has been linked to the general die-back of Quercus ilex 
in south-western Spain known as ‘seca’, where weakened trees are more susceptible 
to attack by Phytophthora (Sánchez-Salguero et al. 2013). It has also been reported 
to cause growth decline in several pine species in south-eastern Spain (Sánchez- 
Salguero et al. 2012). We can expect a general reduction in site productivity in the 
medium and long terms, particularly in species or populations growing in water- 
limited environments, which includes most Iberian forests (Coll et al. 2021).

More importantly, we can expect different responses to disturbances across for-
est types. Evergreen gymnosperms growing in drought-prone areas have exhibited 
low resistance to, but faster recovery after, drought events compared to trees from 
temperate regions (Gazol et  al. 2018). Therefore, the response of vegetation to 
changes in climate may be different as droughts become more intense and/or more 
frequent. This may ultimately affect forest compositions and species distributions. 
In the driest areas, desertification might advance and become a major problem 
(Karavani et al. 2018a).

Forest structure will also play a fundamental role in the response of the vegeta-
tion to drought, with dense, unmanaged forests being generally more vulnerable 
(Lindner and Calama 2013). Forests in dry areas are able to accommodate fewer 
trees per hectare for a given average size, and reduced stand density is known to 
increase drought resistance in several species (Martín-Benito et al. 2010). Earlier, 
more-intense thinnings have been proposed as a fundamental method in the toolkit 
of forest managers to help forests adapt to climate change (Vilà-Cabrera et al. 2018; 
Coll et al. 2021), constituting the basis of ‘ecohydrological’ or ‘hydrology-oriented’ 
silviculture (del Campo et al. 2017). Several modelling exercises have indeed sug-
gested that intense reductions in stand density can help to reduce the impacts of 
climate change on stress-related mortality, particularly on xeric sites (Ameztegui 
et al. 2017).

13.3.3  Pests and Diseases

Climate change may affect the distribution of pathogens and hosts. Among the most 
relevant pests, the pine processionary moth causes most concern for conifer forests 
in Spain. It is expanding northwards and towards higher elevations due to milder 
winter conditions (Roques et al. 2015)––a trend shared across western Mediterranean 
Europe. This expansion may eventually accelerate the process of natural succession 
(i.e. the replacement of conifers by Quercus species), although higher rates of forest 
compositional change may be expected if more-destructive pest outbreaks than pine 
processionary moth occur (Gil-Tena et al. 2019). Imported pests, such as the pine 
nematode, entail additional relevant threats. Haran et  al. (2015) indicated an 
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expected expansion of the pine nematode towards higher altitudes, with the proba-
bility of it spreading into the Pyrenees, towards France and the rest of Europe.

In terms of disease, the pine pitch canker that affects Pinus pinaster and 
Phytophthora cynnamomi that mainly affects oaks can be highlighted. Serra-Varela 
et al. (2017) found that almost the entire Spanish distribution of Pinus pinaster will 
face an abiotic-driven exposure to pitch canker (due to the predicted increase in 
drought events under climate change), while the north-western edge of the Iberian 
Peninsula is predicted to face reduced exposure. Duque-Lazo et al. (2018b) indi-
cated that oak decline provoked by Phytophthora cynnamomi may be reduced in 
Andalusian forests (southern Spain) until 2040, although the suitability of the habi-
tat is predicted to increase after that.

13.4  Nexus for Adaptation and Resilience, 
and the Mitigation of Climate Change

13.4.1  Adaptation to Climate Change and Risk Management

Two of the most significant threats to Spanish forests, where the risk might be 
heightened in the future, are drought and fire. In the case of fire, it is widely recog-
nised that mitigation strategies must be implemented at different scales (Gil-Tena 
et al. 2019). These should combine modification of the land use at the landscape 
level, in order to generate mosaics that will create barriers to the spread of large 
fires, along with stand-level prevention measures to either slow the spread of surface 
fires or, more importantly, impede the possibility of fire crowning or disrupt its 
spread (Loepfe et al. 2012). When implementing forest management interventions, 
it has been demonstrated that modifying the structure and composition of the forest 
at the stand level has an impact by reducing fire occurrence and damage (González 
et al. 2007). Consequently, specific management methods are being applied in cer-
tain regions of Spain (Piqué et al. 2017). It is clear that integrating these methods 
into the landscape, considering the spatial component of fire spread, has a much 
greater chance of mitigating the negative impacts of forest fires, or will facilitate the 
efficiency of suppression efforts, if specific measures are applied to high-priority 
areas (Gonzalez-Olabarria et  al. 2019). Similarly, forest management can play a 
major role in mitigating the impact of drought on a forest (Martínez-Vilalta et al. 
2012). Many of the management options considered to be appropriate for reducing 
competition for water resources (e.g. thinning) or for increasing the efficiency of the 
uptake and use of existing water (i.e. by favouring certain species admixtures based 
on their functional traits) (De Cáceres et al. 2021) may also be considered beneficial 
for reducing fire risk. The National Plan for Adaptation to Climate Change 
2021–2031 actually considers these risks and mitigation goals as part of a broad, 
intersectoral plan (MITECO 2021b) and more-detailed forest-accountability plan 
(MITECO 2018).
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13.4.2  The Role of Spanish Forests and Wood Products 
in Climate Change Mitigation

According to the land use, land-use change and forestry (LULUCF) accounting, 
Spanish forests absorbed 11% of the total greenhouse gas (GHG) emissions in 
2019 – 314.529 Kt CO2 eq. Table 13.1 details the impact of different forest sub-
sector activities. The substitution of forest biomass for fossil-based energy in Spain 
is also important to take into account in this balance because of its potential and low 
cost (Turrado Fernández et al. 2016). The current energy consumption derived from 
biomass is close to 4 Mtoe. The 2030 bioenergy target of the National Integrated 
Plan for Energy and Climate indicates a need for an additional 1.6 Mtoe year−1 of 
electricity generation and 0.41 Mtoe year−1 for heating (MITECO 2020). These 
targets are perfectly achievable considering the estimated Spanish potential biomass 
for energy of 88.7 Mtoe year−1 (or 17.3 Mtoe year−1 for heating), with the portion 
coming from forests being 33.8 Mtoe year−1 (or 5.8 Mtoe year−1 for heating). This 
includes lumber industry residues, roundwood and other woody biomass from for-
estlands. Notably, the above figures do not take into account other potential sources, 
such as woody energy crops, and residues and side streams of the pulp and paper 
industry (Paredes-Sánchez et al. 2019). The use of timber in housing and construc-
tion (e.g. cross-laminated timber, plywood and sawn wood) is gaining more impor-
tance, although it is still far from reaching its potential use. Wood can store carbon 
for decades in buildings and can replace the use of fossil-intensive materials, such 

Table 13.1 Contribution of Spanish forests and wood products to the GHG balance in 2019, and 
the forest reference levels (FRLs)

IPCC LULUCF sub-classes GHG (Kt CO2 eq.) FRL 2021–2025

Forestland remaining as forestland −29372.48 −29,303
Land converted to forestland 123.84
Cropland converted to forestland −2386.28
Grassland converted to forestland −1417.93
Wetlands converted to forestland −2.31
Settlements converted to forestland 0.00
Other land converted to forestland −46.43
Forestland converted to cropland 91.31
Forestland converted to grassland 292.00
Forestland converted to settlements 201.71
Forestland converted to other land 0.00
Harvested wood products −2191.22 −1732
Wildfires (N2O, CH4) Not available 330
Prescribed burning (N2O, CH4) Not available 2
Forest contribution to the 2019 GHG 
balance

−34707.78 −30,703

IPCC Intergovernmental Panel on Climate Change
Source: MITECO (2018, 2021a)
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as steel and concrete, therefore offering opportunities for climate mitigation in one 
of the most CO2-intensive industry sectors.

Investments in climate-smart forestry provide opportunities for using all the dif-
ferent parts of the Spanish forest-based sector for climate mitigation––forest sinks, 
the substitution of wood raw materials and products for fossil materials, and the 
storage of carbon in wood products (Nabuurs et al. 2018). Moreover, this approach 
simultaneously helps to advance the adaptation of the forest to changing climate and 
to build forest resilience. The potential of non-wood forest products as substitutes 
for non-renewable materials has been poorly assessed so far. However, in terms of 
cork, Sierra-Pérez et al. (2018) comprehensively assessed its life-cycle for the pur-
pose of building insulation. According to the study, using cork for insulation can 
have a positive CO2 mitigation impact. The benefits are obvious when contrasted 
with mainstream, inorganic fibrous materials. Similarly, PricewaterhouseCoopers 
(PwC) and ECOBILAN (2008) found that the production of cork stoppers emitted 
less CO2 (1.53 g CO2/piece) than screw caps (37.17 g CO2/piece) and synthetic caps 
(14.83 g CO2/piece). When also accounting for the offsetting effect resulting from 
cork-oak forest management, cork stoppers become even more competitive 
(−113.2 g CO2/piece).

13.4.3  Resilience of Spanish Forests

Many Mediterranean tree species have traits that give them the capacity to respond 
to the most frequent disturbances in an area––most notably, wildfires and drought 
events (response traits). However, because of the speed of current environmental 
change, the occurrence and severity of most disturbances has increased in forests 
across Europe (Senf and Seidl 2021). In the Mediterranean region, the severity, 
frequency and size of burned forest areas has increased over the last few decades 
(Turco et  al. 2018), as have drought severity, heat waves and insect outbreaks 
(Balzan et  al. 2020). The increasing frequency, size and severity of these distur-
bances will, in many cases, be beyond historical norms, and forests will likely often 
be overcome, particularly at the southern edges of their distributions (Vilà-Cabrera 
et al. 2012).

The concern about forest responses to disturbances has made resilience a new 
paradigm for researchers, managers and policy-makers. Considering resistance and 
resilience as two related, but distinct, components of ecosystem responses to distur-
bances, the resistance–resilience framework can provide a good understanding of 
post-disturbance forest dynamics (Sánchez-Pinillos et al. 2019), and may contribute 
to guiding climate-smart forestry and adaptive silviculture. Sánchez-Pinillos et al. 
(2016) developed the Persistence Index (PI) to assess the capacity of communities 
to maintain their functions and services following disturbances. The PI is based on 
the diversity, abundance and redundancy of response traits, under the assumption 
that an ecosystem will be more resilient and resistant to disturbances if it contains a 
greater share of species with a given set of traits that allow them to cope with 
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disturbances. The application of the PI to Iberian forests highlights the importance 
of functional diversity rather than number of species as an indicator of forest resil-
ience (Gazol et al. 2018). It can be used to operationalise the concepts of resistance 
and resilience in real-world management strategies, providing evidence for the 
adaptive management of forest ecosystems. However, vulnerability to disturbances 
can also vary along successional trajectories, which underscores the need to con-
sider the temporal dimension in risk management.

Species-specific interactions may be altered under climate change and, accord-
ing to the stress gradient hypothesis (Maestre et al. 2009), facilitative effects may 
become more frequent. The role of shrubs as nurse vegetation for pine seedlings has 
already been documented in semi-arid and arid Mediterranean regions (Gómez- 
Aparicio et al. 2008), but also in sub-Mediterranean pine woods (Sánchez-Pinillos 
et al. 2018). This role could become even more important in the future. The succes-
sion of disturbances may also impose a significant limitation on the resilience of 
forest stands. For example, the regeneration of Pinus nigra after wildfire depends 
both on the existence of nearby, unburned vegetation patches and on the climatic 
conditions in the years following the fire (Sánchez-Pinillos et al. 2018). The succes-
sion of fires and droughts, therefore, could trigger massive failures in regeneration, 
leading to a change in the ecosystem towards a greater dominance of oak. In the 
driest areas, the combined effect of several disturbances is likely to exceed the 
response capacity of the organisms, leading to the extinction of some species and 
even the disappearance of vegetation cover, which introduces a high risk for soil 
erosion, degradation and desertification.

13.5  Potential for a Forest-Based Bioeconomy in Spain

The Spanish forest sector accounted for 0.6% of the Gross Added Value in 2018, of 
which 0.9% came from forestry works, 0.19% from the timber and cork industry 
and 0.36% from the paper industry (INE 2021b). However, these figures do not 
consider the added value generated by most of wildfire management activities, 
hunting or forest foods (truffles, mushrooms, chestnuts, etc.), and therefore it clearly 
underestimates the total value of the forest-based sector. In 2011–2019, the Spanish 
forest sector employed about 130,000 people (INE 2021a).

Policies will be crucial for implementing a successful transition to a sustainable, 
circular bioeconomy and in contributing to the EU Green Deal Objectives in the 
coming decades. Policies such as the Next Generation Funds for COVID-19 recov-
ery are supporting these objectives. For example, the funds include initiatives for 
increasing cross-laminated timber production, and the number of bioenergy plants 
and biorefineries. Spain’s Bioeconomy Strategy 2015–2030 (Lainez et al. 2018) and 
the Climate Change Law 7/2021 provide incentives for moving to carbon neutrality, 
a necessary part of which will involve sustainable forest management and adapting 
forests to the changing climate.

E. Górriz-Mifsud et al.



223

Using forest biomass to replace fossil raw materials and products––the root 
cause of climate change––is essential. This implies increasing the use of forest bio-
mass in, for example, the construction, packaging and textile sectors, and also for 
energy purposes, at least in the coming decade or two before other renewables (e.g. 
hydrogen) become more available. However, in Spain, forest management is the 
responsibility of the autonomous regions, and therefore it is crucial that they are 
ready to make the necessary changes at the regional level. Despite the large expan-
sion of Spanish forestland in recent decades, the agricultural component of most 
bioeconomic initiatives is also important, and so it is necessary to advance and 
coordinate actions in both sectors. This is indeed being done, for example, in the 
Catalan Bioeconomy Strategy (2021–2030), the Basque Roadmap towards a 
Bioeconomy (2019), the Andalusian Circular Bioeconomy Strategy (2018), the 
Galician Agenda for the Forest Industry (2018), the recently established Research 
Centre for Rural Bioeconomy in Aragón, the CLAMBER project (Castilla–La 
Mancha Bio-Economy Region), and the Plan for Boosting Agro-food Bioeconomy 
in Castilla-y-León. The climate-smart forestry approach could play an important 
role in achieving the objectives of these strategies in the coming decades.
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