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Abstract The methodology to model systems as graphs or networks already exists
for a long time. The availability of information technology and computational power
has led to a renaissance of the network modeling approach. Scientists have collected
data and started to create huge models of complex networks from various domains.
Manufacturing and logistics benefits from this development, because material flow
systems are predetermined to be modeled as networks. This chapter revisits selected
advances in network modeling and analysis in manufacturing and logistics that
have been achieved in the last decade. It presents the basic modeling concept, the
transition from static to dynamic and stochastic models, and a collection of examples
how network models can be applied to contribute to solving problems in planning
and control of logistic systems.

1 Introduction

Since the beginning of the division of labor, manufacturing processes have been
split up in different tasks. These individual tasks have their own tools, materials,
and places. To exploit the advantages of this type of organization of a manufacturing
process, a proper planning and control of all involved aspects is vital. This chapter
focuses on a manufacturing system’s underlying structure, i.e., the pattern of the
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material flow. Such a pattern can be found on various levels of detail. In all cases, it
is a network of entities connected by material flow. This can be, e.g., a network of
machines on a shop floor or a network of suppliers, manufacturers, and retailers in
a supply chain.

We present a retrospect on the development of a deeper understanding of complex
networks in manufacturing and logistics throughout the last decade around the work
of the Production Systems and Logistic Systems group within the Research Cluster
for Dynamics in Logistics at the University of Bremen, Germany.

2 Complex Networks in Manufacturing and Logistics

2.1 Modeling of Complex Networks

Systems of interacting or connected entities can be modeled as a graph (G), which
consists of a set of vertices (V ) connected by a set of edges (E), such that G =
(V ,E). Another widely used nomenclature calls these system networks, composed
of nodes connected by links. In general, there is no difference in the meaning of the
two variants and they can be used synonymously. Although the concept of graphs
is known in mathematics since centuries, the modeling of large-scale systems as
graphs has not been feasible for a long time due to the required effort to manually
gather data, draw the graph, and perform any type of calculation for graph-based
algorithms.

The pioneering research in complex networks has covered network models from
various domains, such as social networks, biological networks, and computer net-
works (see, e.g., Albert and Barabási 2002; Boccaletti et al. 2006). The researchers
have investigated the structure of complex networks, their properties, and their
formation. A main finding throughout the years was the fact that network models,
although coming from different domains, share common properties with regard to
their structure.

The transfer and application of complex network theory to the manufacturing
and logistics domain began a decade ago with the works of Vrabič et al. (2013)
and Becker et al. (2014). The early contributions demonstrate how the material
flow in a manufacturing system can be converted into a network model. Network
modeling is based on material flow data, which can be collected as a byproduct from
shop floor control systems. Such data consists of a list of all available machines on
the shop floor and a collection of records documenting the individual material flow
events. Each record contains at least the manufacturing order ID, the machine that
processed a certain operation, as well as a timestamp. An algorithm can be used
to build the network model by creating the sets V and E (Becker et al. 2014).
The network nodes are represented by the machines on the shop floor. The set of
edges is filled by linking each record with its consecutive record from the same
manufacturing order: if an item from the same manufacturing order is first being
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(b)

(a)

Fig. 1 Two network representations of the material for two different manufacturing scenarios
created with data from manufacturing execution systems. (a) Network model of a shop floor
production of machine parts. (b) Network model from process industry

processed on machine A, and the next timestamp is an operation on machine B,
then a link A → B is added to E.

Figure 1 displays two network models created by Becker et al. (2014). Both
were created in the exactly same fashion using the algorithm presented above.
However, due to the differences in the handling of the material flow in the two
systems, two very distinct network models were obtained. Figure 1a shows the
material movements on a shop floor during the manufacturing of machine parts,
whereas Fig. 1b illustrates the flow of items in process industry with distinct groups
of machines in clusters.
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2.2 The Structure of Manufacturing Networks and Its Impact
on Material Flow

2.2.1 Comparison of Manufacturing Networks to Other Flow-Oriented
Networks

A large part of the research work dealing with complex networks in manufacturing
either discovers structural characteristics of those networks or investigates the
relation between structural network characteristics and the performance of the
material flow. Network models from other domains have already been described
in detail, such as engineered networks from communication (Braha and Bar-Yam
2006), urban traffic (Lämmer et al. 2006), or supply chains (Meepetchdee and Shah
2007), but also evolved network structures like river networks (De Menezes and
Barabási 2004) or predator–prey relations in ecosystems (Williams et al. 2002).

Therefore, a first approach was to compare the properties of manufacturing
networks and other flow-oriented networks. The comparisons covered traffic net-
works (Becker et al. 2011) as well as metabolic networks (Becker et al. xxxx, 2011).
These network types were chosen for comparison, because they also represent a
structure in which a flow of items needs to be managed in order to fulfill the
system’s objectives. Networks of metabolic reactions in cells in particular can be
seen as “factories,” which transform incoming items into final products via enzyme
reactions. The main findings were that, on the one hand, all these network types
exhibit strong structural similarities when observing the distribution of network
characteristics, such as degree of connectivity. On the other hand, flow simulations
on these networks showed a distinct behavior. Metabolic networks tend to have a
more evenly distributed flow, whereas manufacturing networks tend to go toward a
hub-and-spoke architecture with a small number of highly frequented nodes.

2.2.2 The Relation Between Structure and Performance

As a consequence of the investigation of different networks from various domains,
researchers have hypothesized that there is a relation between the static structure
of a network and its performance regarding the material flow. The rationale behind
this is the idea that networks are designed (or in the case of biological or ecological
networks have evolved) in a way to support the material flow processes. In order
to quantify structural properties of networks, a variety of network figures has been
developed (see, e.g., Boccaletti et al. 2006). Most researchers focus on centrality
measures, which indicate how strong the nodes in a network are connected with
each other. The most frequently used centrality measures are Degree-Centrality,
Betweenness-Centrality, Closeness-Centrality, and Eigenvector-Centrality (Becker
and Wagner 2016). Centrality measures can be determined for individual nodes
or as an average over all nodes in the network (Becker et al. 2012; Omar et al.
2018). A key observation by Becker et al. (2012) is the fact that there is a
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Fig. 2 The graph shows the
relation between the average
degree of a network and the
work in process obtained
from a series of material flow
simulations. The results
indicate that a specific degree
of connectivity in a material
flow network is best suited to
prevent the buildup of
queues (Becker et al. 2012)

nonlinear relation between the degree of connectivity in a material flow network
and its performance. Figure 2 shows the results from a simulation study. A material
flow simulation was carried out in a selection of networks. These networks were
constructed from real-world data following the procedure described in Sect. 2.1.
The work in process (WIP) served as key performance figure. It indicates how much
work content is present in the system, e.g., waiting in queues or being currently
processed, and should be kept on a low level. The obtained results show that there
is an ideal degree of connectivity in the network structure which allows to keep the
WIP low. Lower connectivity and increased connectivity lead to an increase in WIP.

Beber and Becker (2014) extended the scope beyond individual nodes and
investigate patterns in the shape of three-node subgraphs, also known as network
motifs. Their findings indicate that the motif signature can serve as a “fingerprint”
to distinguish different manufacturing networks from each other.

Other approaches make use of network centrality metrics to identify bottleneck
work stations in a manufacturing system (Blunck et al. 2014). Although the
assessment of the actual material flow in a network sill provides more reliable
information whether a work station is a bottleneck or not, the centrality of a node
in a network can also be used to identify those bottlenecks. The advantage of the
network measures is their availability. Even in early planning stages, when material
flow data is either not yet available or can only be acquired with the help of computer
simulations, the bottleneck situation in a manufacturing system can already be
assessed using network measures.

Another application-oriented approach using centrality measures is able to iden-
tify key machines in a manufacturing system based on network measures (Becker
and Wagner 2016). A selection of centrality measures were used to identify the
machines that have the highest impact on material flow performance. The results
emphasized the applicability of certain network centrality measures for this purpose.
Moreover, it could be shown that not all centrality measures are suited to identify
important nodes in manufacturing systems, due to the specific mechanics of flow in
these systems in comparison to other networks.
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2.3 Dynamic Processes on Material Flow Networks

The previous modeling approach of networks basically considers the static descrip-
tion of material flow and information flow structures, which effectively means that
network elements do not change over time. Applied to material flow systems, it
would mean there is no change in material flow level at any time. However, recent
studies suggest that the structure of a material flow network changes as a result of
events or changing circumstances (e.g., passing a job to the next work station or
failure of work stations) over a specific period of time (see, e.g., Beber and Becker
2014; Vrabič et al. 2013). Consequently, it might be useful to consider such dynamic
processes for specific applications.

Figure 3 shows potential structural changes in networks. As indicated earlier,
all these changes are, among other things, triggered by additional work systems,
machine breakdowns, changes in product mix, etc. In real material flow systems,
a combination of all these events leads to a variety structural changes during a
certain observation period. For analytical purposes, the entire observation period
can be divided into a number of time windows. If there are any active nodes and
edges within a defined time window, a network instance is created. This way,
structural changes can be observed and linked to various events. Although the
length of each time window can be selected freely, it has a significant impact on
the structural changes. For example, for shorter time windows, the average values
of different key network figures display stronger variation from one time window to

intensified material flow

new material flow disappearing material flow

reduced material flow

disappearing work systemnew work system

Fig. 3 The structural changes affect in particular both network elements (i.e., nodes and edges). It
is therefore possible that nodes and edges disappear or join the network over time. Moreover, the
intensity of the edge weights may vary over time (Wagner and Becker 2016)
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another, whereas for longer time windows the deviations between time windows are
lower (Wagner and Becker 2016).

3 Advanced Network Modeling: Stochastic Block Models

Network modeling in manufacturing and logistics has seen a number of advances
in the recent decade. The first simple, yet effective modeling approach based on
material flow data has been presented in Sect. 2.1. The consideration of the devel-
opment of networks over time was discussed in Sect. 2.3. A further development
in network modeling in manufacturing was the introduction of stochastic models.
In particular, the Stochastic Block Model (SBM) allows for a prediction of future
states in a manufacturing system (Funke and Becker 2020). The motivation behind
the application of SBMs as a tool in manufacturing systems modeling is the fact that
many material ïňĆow systems consist of elements that can be grouped into clusters
of similar objects in terms of their role in the material flow, e.g., manufacturing
cells. In a nutshell, an SBM is a network model in which groups of similar nodes
(like clusters) are seen as structural equivalent. Instead of explicitly modeling the
links between nodes, the general probability of two nodes from two groups being
connected is given (see Fig. 4).

Creating an SBM is not as straightforward as creating a simple network model
as presented in Sect. 2.1. The modeling requires the selection of the desired type
of SBM and an appropriate inference method to derive the actual model from the
material flow data. Funke and Becker (2019) have investigated, compared, and
evaluated a variety of SBM variants and inference methods to facilitate the selection
process.

Funke and Becker (2020) were then able to demonstrate how an SBM can be
applied to perform link prediction. Due to the stochastic nature of the model, it
is possible to retrieve a probability of two nodes being connected (or not being
connected) in the future. Consequently, managers and planners will be enabled to
make design decision regarding the planning and control of material flow in their
manufacturing systems.

1 2

4 3

0 1 0 0
0 0 0 1
1 0 0 1
0 0 1 0

0 1 0 0
1 0 0 1
0 0 0 1
0 0 1 0

Fig. 4 Minimal model of an SBM: (1) the network model is transformed into an adjacency matrix,
(2) the nodes are grouped into blocks with similar connections, and (3) the result is a block
matrix with probabilities indicating the likelihood of two nodes from corresponding blocks being
connected
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4 Identification of Autonomous Clusters Considering the
Topological Setting

Nowadays, companies are faced with constantly increasing complexity due, for
example, to shorter product life cycles, increasing customer requirements, and
high fluctuations in demand. This requires novel control solutions. The massive
technological improvements over the past years additionally support the trans-
formation toward autonomous control approaches. Previous research activities in
the context of autonomous control are primarily limited to control algorithms
and technologies. However, most companies are facing the challenge not only
to select appropriate control algorithms and to adapt the new technologies but
also to decide how the structure of a system, i.e., the network topology, can
support their transformation toward decentralized autonomous control. From a
topological perspective, modularization, which subdivides a system into small units
with autonomous decision-making, seems to be a promising approach (Gronau and
Theuer 2011; Mourtzis and Doukas 2013). The resulting question is which work
systems should form a unit and act autonomously?

A first attempt to identify highly interacting work systems, in order to be able
to subsequently merge them into autonomous units—here called clusters, was made
by Vrabič et al. (2012). Their approach is based on the assumption that edges in
networks represent the intensity of material flow between the corresponding nodes.
Consequently, nodes inside a cluster should be strongly connected, but only loosely
connected to other nodes outside the cluster. In recent years, a number of clustering
methods have been developed. Some methods have been tested to determine their
suitability for the identification of autonomous clusters. Subsequently, the proposed
approach was extended to include the dynamic development of the manufacturing
system over time (Becker and Wagner 2015; Becker and Weimer 2014). To this end,
they evaluated the consistency of clusters over time (for an example, see Fig. 5).

Fig. 5 Resulting network representations for three different time windows in order to reveal
similar cluster pattern. Within the first time window, two clusters have been identified and only
one cluster in the following time windows. The nodes 6, 29, 30, and 31 are represented in all time
windows (Becker and Wagner 2015)
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Fig. 6 Increasing the length of time windows results in an increasing number of nodes and edges.
As a result, this leads to a lower number of clusters, which are in turn larger in size. The results for
shorter time windows are mostly similar for both datasets (a and b)

Tracking the evolution of each cluster can help identify robust clusters, which
are therefore particularly suited to serve as autonomous clusters. Furthermore, in
accordance with the results of Lancichinetti et al. (2010) that real-world networks
of the same category are identical with respect to their cluster structure, Wagner and
Becker (2016) were able to show that this is also true for material flow networks for
relatively shorter time windows (see Fig. 6).

5 Synthetic Material Flow Networks with a Built-In Cluster
Structure: A RandomWalk-Based Approach

In order to be able to test the proposed clustering approach for the identification
of autonomous structures in networks of different typologies, appropriate data is
needed. However, due to a lack of reliable data with different cluster structures, the
necessity arises to generate well-characterized synthetic material flow networks that
allow extensive testing in simulation studies. Synthetic networks are characterized
by the fact that they are generated randomly, but within a framework of rules.
To generate graphs with a certain built-in cluster structure, a random walk-based
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approach can be applied, as presented in Wagner and Becker (2017, 2018). With
this approach, different job routing patterns are modeled as random walks.

A random walk is considered as a stochastic process which results in a sequence
of randomly visited nodes (Lovász 1993). Consequently, random walks do not
require any global network information. Moreover, they can help to understand the
underlying routing mechanics of systems and are therefore able to reveal specific
characteristics like cluster structures in networks (Schaeffer 2007). This is explained
by the fact that random walks tend to get trapped in clusters. Hence, it is not the
random walks themselves that create networks with certain characteristics, but they
need a network as a basis for their movements. Such networks are also referred to as
underlying networks (Rosvall and Bergstrom 2008). The topological characteristics
of such a network have been used to guide a random walk. To be able to create
networks with various built-in cluster structures, not only the parameters of the
random walks have to be defined but also those of the underlying network.

After applying this approach, it can be observed how random walks change the
number of clusters, the cluster sizes, and the degree of connectivity of clusters
given in the underlying network. The main result shows that the random walk-based
routing is well suited to map the cluster structures of a number of tested underlying
networks (Wagner and Becker 2018). This gives the underlying network a leading
function. In future, this approach can be extended to create networks with other
topological patterns.

6 Summary and Outlook

Research on complex networks has become visible across many different disciplines
throughout the recent years. With regard to the flow of material, goods, and informa-
tion in supply chains, traffic, and on shop floors, network models are a powerful tool
in manufacturing and logistics research. This chapter has shown the foundations of
network modeling in this domain and presented a selection of more detailed research
activities and application-oriented approaches. It became apparent that, on the one
hand, many network-related insights from physics, biology, or social sciences can
be transferred to manufacturing and engineering. On the other hand, material flow in
manufacturing has also specific properties, which are distinct from the flow of traffic
on roads or the flow of messages in social networks. This is why it is essential to
continue the research on complex networks in manufacturing and logistics.

The direction for future research should be aligned with the application opportu-
nities in industry. More and more companies will collect massive amounts of system
data in the context of Industry 4.0 and thus will be able to make use of network
modeling. The inclusion of Artificial Intelligence (AI) methods in the processing
of network data can further increase the quality of network models. Therefore, the
so far developed methodologies should be transferred into practical applications for
decision-making in planning, operation, and control of logistic systems. Figure 7
summarizes the development of network research in manufacturing and logistics.
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Fig. 7 Network modeling in manufacturing and logistics has emerged from the application of
graph theory in the information age. Initially, researchers have concentrated on modeling and
description of logistic networks. Over the years, the research has evolved into a multitude of
methods for description, design, and prediction of networks. Future research should be focused
on creating industrial applications and on the inclusion of additional data sources and AI methods
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