
An Iterative Scheme of Safe
Reinforcement Learning for Nonlinear

Systems via Barrier Certificate
Generation

Zhengfeng Yang1, Yidan Zhang1, Wang Lin2(B), Xia Zeng3, Xiaochao Tang1,
Zhenbing Zeng4, and Zhiming Liu3,5

1 Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai, China

zfyang@sei.ecnu.edu.cn,{ydzhang,xctang}@stu.ecnu.edu.cn
2 School of Information Science and Technology, Zhejiang Sci-Tech University,

Hangzhou, China
linwang@zstu.edu.cn

3 School of Computer and Information Science, Southwest University,
Chongqing, China

xzeng0712@swu.edu.cn
4 Department of Mathematics, Shanghai University, Shanghai, China

zbzeng@shu.edu.cn
5 Centre for Intelligent and Embedded Software, Northwestern Polytechnical

University, Suzhou, China
zliu@nwpu.edu.cn

Abstract. In this paper, we propose a safe reinforcement learning app-
roach to synthesize deep neural network (DNN) controllers for nonlinear
systems subject to safety constraints. The proposed approach employs an
iterative scheme where a learner and a verifier interact to synthesize safe
DNN controllers. The learner trains a DNN controller via deep reinforce-
ment learning, and the verifier certifies the learned controller through
computing a maximal safe initial region and its corresponding barrier
certificate, based on polynomial abstraction and bilinear matrix inequal-
ities solving. Compared with the existing verification-in-the-loop synthe-
sis methods, our iterative framework is a sequential synthesis scheme of
controllers and barrier certificates, which can learn safe controllers with
adaptive barrier certificates rather than user-defined ones. We implement
the tool SRLBC and evaluate its performance over a set of benchmark
examples. The experimental results demonstrate that our approach effi-
ciently synthesizes safe DNN controllers even for a nonlinear system with
dimension up to 12.

This work was partially supported by the Scientific and Technological Innovation 2030
Major Projects under Grant 2018AAA0100902, the National Natural Science Foun-
dation of China under Grant 61772203, 61902325, 62032019, 61732019, the Zhejiang
Provincial Natural Science Foundation of China under Grant LY20F020020, the Capac-
ity Development Grant of Southwest University under Grant SWU116007, the Funda-
mental Research Funds for the Central Universities under Grant SWU117058.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 467–490, 2021.
https://doi.org/10.1007/978-3-030-81685-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_22

468 Z. Yang et al.

Keywords: Formal verification · Safe reinforcement learning · Barrier
certificates · Continuous dynamical systems

1 Introduction

The design and synthesis of controllers for dynamical systems is a fundamental
problem in the field of control. In recent years, with the boom of deep learning,
there has been considerable research activities in the use of deep neural net-
works (DNNs) for control of cyber-physical systems such as unmanned aerial
vehicles, self-driving cars, etc. [33]. For these safety-critical systems, one of the
most important and challenging problems is safe controller synthesis, that is,
to synthesize a controller guaranteeing that the system’s trajectory will never
intersect with an undesired region.

A number of techniques included under the umbrella of Deep Reinforcement
Learning (DRL) have been used to effectively learn controllers from user-defined
reward functions encoding desired system behavior [17,36]. A majority of these
works lack formal reasoning about the safety of such DNN-controlled dynamical
systems from such learning process. To guarantee the safety property of syn-
thesized DNN controllers, considerable works focus on the safety verification of
DNN-controlled closed-loop systems, which is a really hard problem because it
is tangled with highly nonlinear DNN expressions. The main research on this
topic is through reachable set estimation of DNN-controlled systems, which can
only deal with time bounded safety property [11,12,18,19,37]. On the other
hand, other than formally verifying synthesized DNN controllers, more recent
works have been proposed to learn DNN controllers for dynamical systems with
safety guarantees [8,39,40]. For example, a verification-in-the-loop DNN con-
troller training algorithm is presented in [8], which integrates RL framework
with user-provided control barrier functions (CBFs) for reward function encod-
ing, combined with SMT based formal CBF checking; a correctness-by-design
method is proposed in [39] that first learns DNN controllers and barrier cer-
tificates simultaneously using supervised learning, and then performs posterior
formal verification of barrier certificates via SMT solvers.

In this paper, we propose a safe reinforcement learning approach to synthesize
DNN controller for nonlinear systems subject to safety constraints via barrier
certificate generation. The proposed approach employs an iterative scheme where
a learner and a verifier interact to synthesize safe DNN controllers. Firstly, the
learner applies DRL method to train a DNN controller by encoding the safety
requirement (and the barrier certificate requirement, if applicable) into reward
function. For the learned controller, the verifier computes a Maximal Safe Input
Region (MSIR) and the corresponding barrier certificate. Once the MSIR is a
superset of the prescribed initial set Θ, it is easy to see that the safety of the
closed-loop system under the learned controller with Θ is verified. Otherwise, the
computed barrier certificate needs to be adjusted and fed to guide the learner
to retrain a new controller. The above inductive loop repeats until an MSIR
enclosing Θ is computed.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 469

Compared with [8], a user-provided barrier certificate is adopted for reward
function encoding and the barrier certificate is fixed through the learning process,
whereas in this paper the controllers and the barrier certificates are synthesized
simultaneously and yielded in a larger state space, which increases the diver-
sity and flexibility of barrier certificates. Meanwhile, the barrier certificates in
our approach are computed by numerical optimization method, which is more
efficient than the SMT based method in [8]. Compared with [39], our method
is based on RL framework and thus has better data sampling efficiency than
the meshing-based data set generation in [39] for supervised learning. Besides,
our method is iterative so that can utilize intermediate learned results to guide
learning in the next iteration, rather than restarting from scratch as in [39] when
a learned barrier certificate failed formal checking. Thanks to these advantages,
our method has really good performance in efficiency and scalability even for
problems with dimension up to 12.

The main contributions of this paper are summarized as follows:

– We propose a safe reinforcement learning via barrier certificate generation to
synthesize DNN controller, which can guarantee the unbounded-time safety
of the closed-loop systems.

– Our synthesis approach employs a sequential iterative scheme, where DNN
controllers and the corresponding barrier certificates are synthesized alterna-
tively, and in each iteration, barrier certificates are slightly adjusted to guide
retraining safe DNN controllers quickly.

– We provide a detailed experimental evaluation on a set of benchmarks, which
shows the efficiency and effectiveness of our approach.

The paper is organized as follows. Section 2 gives a brief introduction to
the safe controller synthesis problem. Section 3 describes an iterative scheme
of safe reinforcement learning for safe DNN controller synthesis. In Sect. 4, we
provide an overall algorithm with a detailed example attached to depict how
the algorithm works. In Sect. 5, we present an experimental evaluation of our
algorithm over a set of benchmark examples. We compare with related works in
Sect. 6 before concluding in Sect. 7.

2 Preliminaries

Notations. Let R and N be the field of real number and natural number, respec-
tively. R[x] denotes the ring of polynomials with coefficients in R over variables
x = [x1, x2, . . . , xn]T , and R[x]n denotes the n-dimensional polynomial ring vec-
tor. Let R[x]d ⊂ R[x] be the vector space of polynomials of degree at most d.
Let N

n
d := {α ∈ N

n :
∑

i αi ≤ d}. Denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d)
the space of sums of squares (SOS) polynomials.

Consider a continuous dynamical system of the form

ẋ = f(x), (1)

470 Z. Yang et al.

where x = (x1, . . . , xn)T ∈ R
n and f = (f1, . . . , fn)T ∈ R[x]n is the vector field

defined on the state space D ⊂ R
n. We assume that f satisfies the local Lipschitz

condition, so that (1) has a unique solution x(t,x0) in D for every initial state
x0 ∈ D at time t = 0.

In many contexts, a dynamical system is equipped with a domain Ψ ⊂ D and
an initial set Θ ⊂ Ψ , represented as a triple C .= (f , Θ, Ψ). Given a prespecified
unsafe region Xu ⊂ D, we say that the system C is safe if all system trajectories
starting from Θ can not evolve into any state specified by Xu, which has been
widely investigated in safety critical applications.

Definition 1 (Safety). For a constrained continuous dynamical system
(CCDS) C = (f , Ψ,Θ) and a given unsafe region Xu, the system is safe if for all
x0 ∈ Θ, there does not exist t1 > 0 such that

∀t ∈ [0, t1].x(t,x0) ∈ Ψ and x(t1,x0) ∈ Xu,

that is, the system’s trajectory never reaches Xu from Θ as long as it remains
in Ψ .

Remark 1. If the trajectory x(t,x0) first leaves Ψ and then enters Ψ again, then
by Definition 1, the part of the trajectory from the first exit point is excluded
from our concern and is not relevant to the safety of the considered CCDS.

In this paper, we consider a controlled CCDS C = (f , Ψ,Θ) with continuous
dynamics defined by {

ẋ = f(x,u)
u = k(x), (2)

where x ∈ Ψ ⊆ R
n are the system states, u ∈ U ⊆ R

m are the control inputs,
and f : Ψ × U → R

n and k : Ψ → U are the locally Lipschitz continuous vector
field and feedback controller function, respectively. The problem we considered
in this paper is defined as follows.

Definition 2 (Safe Controller Synthesis). For a controlled CCDS C =
(f , Ψ, Θ) with f defined by (2) and a given unsafe region Xu, design a locally
Lipschitz continuous feedback control law k such that the closed-loop system C
with f = f(x,k(x)) is safe as per Definition 1.

The concept of barrier certificates plays an important role in safety verifica-
tion of continuous systems. The essential idea is to use the zero level set of a
barrier certificate B(x) as a barrier to separate all the reachable states from the
unsafe region. The following theorem states the conditions that must be satisfied
by a barrier certificate.

Theorem 1 [26]. Given a continuous system C = (f , Ψ,Θ), and the unsafe
region Xu. Suppose there exists a real-valued function B : Ψ → R satisfying the
following conditions:

(i) B(x) ≥ 0 ∀x ∈ Θ,

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 471

(ii) B(x) < 0 ∀x ∈ Xu,
(iii) B(x) = 0 ⇒ LfB(x) > 0 ∀x ∈ Ψ ,

where LfB(x) denotes the Lie-derivative of B(x) along the vector field f(x), i.e.,
LfB(x) =

∑n
i=1

∂B
∂xi

· fi(x), then B(x) is a barrier certificate, and the safety of
system C is guaranteed.

Corollary 1. For a controlled CCDS C = (f , Ψ,Θ) with f defined by (2), a
feedback control law u = k(x) can be used to ensure the safety control of C, if
there exists a barrier certificate for the closed-loop system under the control law
k(x).

Throughout this paper, we assume that the initial set Θ, the domain Ψ
and the unsafe set Xu are compact semi-algebraic sets, defined by polynomial
equations and inequalities. Concretely, the semi-algebraic sets Θ,Ψ and Xu are
represented as follows:

⎧
⎨

⎩

Θ : = {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , m1},

Ψ : = {x ∈ R
n |hj(x) ≥ 0, j = 1, . . . , m2},

Xu : = {x ∈ R
n | qk(x) ≥ 0, k = 1, . . . , m3},

for some polynomials gi, hj , qk ∈ R[x].

3 Synthesis of Safe Controller via Learning and
Verification

In this section, we introduce an iterative framework for synthesizing a deep neural
network (DNN) controller for a CCDS subject to safety constraints. As shown in
Fig. 1, the procedure is structured as an inductive loop between a learner and a
verifier. The learner trains a DNN controller using reinforcement learning. The
trained DNN controller is passed to the verifier, which checks the safety of the
closed-loop system under the trained controller via barrier certificate generation.

Observing Fig. 1, we first apply the reinforcement learning method to train a
neural network controller u = k(x) in terms of the target of the safety satisfiabil-
ity, and then try to yield a barrier certificate B(x) based on the bilinear matrix
inequalities (BMI) solving, to guarantee the safety of the closed-loop system with
the controller k(x).

However, for the system with the controller k(x), such barrier certificate B(x)
may not exist. The reasons are twofold: (i) the controller k(x) is trained through
the trajectories starting from finite points in the initial set Θ; (ii) the existence
of the barrier certificate is just a sufficient condition of the safety of the given
system.

In this situation, for the learned controller k(x), one may compute a Maximal
Safe Input Region (MSIR) Θγ and the corresponding barrier certificate B(x),
which can guarantee the safety of the continuous system with respect to the
initial set Θγ . Once Θγ is a superset of the prescribed initial set Θ, i.e., Θ ⊆ Θγ ,

472 Z. Yang et al.

Continuous
SystemGrid Initial

Region

Critic
Network

Actor
Network

Replay Buffer
Polynomial
Inclusion

MSIR and BC
Computation

Safety
Satisfaction?

BC
Refinement

Output:
Success

Reward

Learner Verifier

Loop Validation

DNN Controller
Abstract

controller:

MSIR
BC

Yes

No

Updated BC

update

update

Fig. 1. The framework of safe neural network controller synthesis.

it is easy to see that the safety of the system with Θ is verified. Otherwise,
we need adjust the barrier certificate B(x) and the controller k(x) sequentially.
This operation is able to build an iterative framework, wherein each iteration
proceeds in two stages:

– Update the neural network controller. We apply deep reinforcement
learning method to obtain the updated controller ki(x) by feeding B̂i−1(x),
which is the barrier certificate yielded from the above iteration (See the
learner in Fig. 1).

– Compute the barrier certificate with the maximal safe input region.
With the updated controller ki(x), we transfer the problem of barrier certifi-
cate generation into a bilinear matrix inequalities (BMI) solving, and then
compute the maximal region Θi with the corresponding barrier certificate
Bi(x). Namely, the existence of Bi(x) suffices to prove the safety of the sys-
tem with respect to the initial set Θi. Once Θi encloses the original initial set
Θ, i.e., Θ ⊆ Θi, the current controller ki(x) is the desired safe one. Otherwise,
we need refine Bi(x), and then go to the next iteration (See the verifier in
Fig. 1).

3.1 Training of Safe Controller

In the following, we focus on the learner component of Fig. 1 and show how
to train a safe controller using deep deterministic policy gradient (DDPG) [23],
which is a popular reinforcement learning approach suited for continuous control
applications. The DDPG combines the value-based and policy-based method,
and is made up of two parts: actor and critic. The critic uses the off-policy data
to learn the action-value function, which evaluates how good the action k taken
is in the given state x. The actor can learn the continuous action policy by
using the action-value function. In practice, it is difficult to obtain the exact
action-value function and policy function. Thus, two deep neural networks are

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 473

introduced to solve this problem, i.e. the critic network Q(x,u|βQ) and actor
network k(x|βk) with weights βQ and βk, respectively.

The reward function should be appropriately designed to achieve the goal of
safety controller synthesis via reinforcement learning. For safe controller synthe-
sis, the task is to synthesize a DNN controller such that all the trajectories of
the closed-loop system starting from Θ can not evolve into the unsafe region Xu.
Thus, the reward function is preliminarily defined as

r̂t = β1 · dist(Xu,xt)

where β1 > 0 is the scale factor, and dist(Xu,xt) denotes the distance between
the state xt and the unsafe region Xu. In addition, according to the third condi-
tion of Theorem 1, once the trajectory hit the zero level set of barrier certificate
it must satisfy LfB(xt) > 0; otherwise, the system behavior should be penalized.
For this purpose, the reward function is updated as

rt =
{

r̂t − min(β2|LfB(xt)|,Δrmin), |B(xt)| < δ and LfB(xt) ≤ 0
r̂t, otherwise (3)

where LfB(xt) =
∑n

i=1
∂B(xt)

∂xi
fi(xt, u), β2 > 0 is the scale factor, δ is a small

positive value characterizing the zero-level set of B, and Δrmin > 0 is the thresh-
old avoiding too large fluctuations of reward value. In this work, we set β1 = 1.0,
β2 = 1.0, δ = 0.1, Δrmin denotes the size of Ψ . Since 0 ≤ r̂t ≤ Δrmin, the setting
rt (3) can be kept within a certain range, making the convergence effect better.

Algorithm 1. Barrier Certificate Guided Reinforcement Learning
Input: CCDS C; unsafe region Xu; barrier certificate B(x)
Output: DNN Controller k
1: Initialize critic Q and actor k, corresponding target networks Q′ = Q and k′ = k
2: Initialize barrier certificate B(x) = ⊥ and replay buffer R = ∅
3: Sample initial states from Θ and store them to ΩΘ

4: for x0 ∈ ΩΘ do
5: for t = 1, · · · , T do
6: calculate ut = k(xt)
7: calculate xt+1 = xt + f(xt,ut)
8: calculate rt = r(xt+1, Xu, B(x))
9: store (xt,xt+1, ut, rt) to R

10: Sample random minibatch of transitions from R
11: Update critic Q and actor k
12: end for
13: Update the target networks Q′ and k′

14: end for
15: return k

To synthesize the safety controller using reinforcement learning, a dataset of
sampled trajectories is needed. To sample trajectories, we first generate a set of

474 Z. Yang et al.

initial states from Θ. Let l,u ∈ R
n be the vectors of the lower and upper bounds

of Θ, i.e., Θ ⊆ [l,u]. We first sample from each dimension of [l,u] equidistantly
with a fixed mesh size. For a sampled initial state x0, its trajectory is generated,
and the transition tuples (xt,xt+1,ut, rt) are collected to form a replay buffer to
update the action and critic networks. Concretely, the action network receives
a state xt in time step t as input, and directly outputs a continuous action
ut = k(xt|βk). The critic network takes the state xt and the action ut as input,
and outputs a scalar Q-value Q(xt,ut|βQ). For every m simulated time steps, we
sample a batch of tuples from the buffer as the training data to update the actor
and critic networks, until a certain prescribed termination condition is met for
the learning process. The resulting actor network is the synthesized controller.
All training related parameters, such as smoothing factor, are set as default.
Our DDPG implementation is based on an open-source package DDPG [23].
The algorithm is outlined in Algorithm 1.

Remark 2. The barrier certificate is initialized to be ⊥, which means that the
learner initially trains a DNN controller via standard reinforcement learning,
without the aid of barrier certificates.

3.2 Safety Verification with Barrier Certificates

In the following, we focus on the verifier component of the proposed safe DNN
synthesis framework, as described in Fig. 2, and show how to verify the safety of
the closed-loop system under the DNN controller yielded from the learner.

Polynomial
Inclusion

MSIR and BC
Computation

BC
Refinement

Yes

No

Learner

Verifier

Updated

MSIR
BC

Output:
Success

Fig. 2. The framework of the verifier.

Shown in Fig. 2, the learner produces a DNN controller ki(x). In order to
make the problem of generating barrier certificates amenable to polynomial opti-
mization problem, the verifier first employs Bernstein polynomial approximation
to abstract the learned DNN controller as a polynomial one k̃i(x), with the asso-
ciated abstract error ε modeled as a bounded parameter, that is, u = k̃i(x) + ε.

By doing it, the safety of the closed-loop system under the DNN controller
can be guaranteed via the existence of barrier certificates for the closed-loop
system under the abstract controller. The verifier then performs bilinear matrix

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 475

inequalities (BMI) solving technique, to obtain a maximal safe initial region
(MSIR) Θi and the corresponding barrier certificate Bi(x). Once the computed
MSIR Θi contains the given initial set Θ, then the safety of the closed-loop
system under the DNN controller u = ki(x) is verified. Otherwise, the verifier
slightly adjusts the barrier certificate Bi(x), based on quadratic programming
solving, to gain an updated one B̃i(x), which can separate the unsafe region
from the initial set. Then, the refined BC is fed to guide the learner to retrain
a new DNN controller.

Polynomial Abstraction of DNN Controllers. In the following, we con-
sider the DNN controller with a single output, and for multiple-output cases,
an extension is to approximate each output respectively. Formally, for a DNN
controller k(x), we seek to compute an approximate polynomial p(x) ∈ R[x]
with a verified bound μ ∈ R+, such that

|k(x) − p(x)| < μ,∀x ∈ Ψ,

and the bound μ is as small as possible.
Weierstrass approximation theorem [7] asserts that a continuous function on

a closed and bounded interval can be uniformly approximated on the interval
by polynomials to any degree of accuracy. In this paper, we will compute the
approximate polynomial based on the theory of Bernstein polynomials [9]. Let
d = (d1, · · · , dn) ∈ N

n and f : [0, 1]n → R. The polynomial

Bf,d(x) =
∑

0≤cj≤dj
j∈{1,··· ,n}

f
(c1
d1

, · · · ,
cn

dn

) n∏

j=1

(
dj

cj

)

x
cj
j (1 − xj)dj−cj

is called the multivariate Bernstein polynomial of f . Theoretically, the Bernstein
polynomial Bf,d(x) converges uniformly to f for d1, · · · , dn → ∞. In practice,
the estimation of the approximation error bound is needed. As stated in [9],
assume f is a Lipschitz continuous function over I : [0, 1]n with a Lipschitz
constant L, then we have

‖Bf,d(x) − f(x)‖ ≤ L

2

(n∑

j=1

(
1
dj

)
) 1

2

, ∀x ∈ I.

Now, for the DNN controller k(x) over a domain Ψ , we can apply the above
method to obtain a Bernstein polynomial with a valid approximate error bound
as its abstraction. Concretely, we first construct an interval enclosure for Ψ , and
apply a linear transformation to map the interval enclosure onto the unit box I,
then utilize Bernstein polynomial approximation to obtain an abstract polyno-
mial controller k̃(x)+ε with ε ∈ [−μ, μ], where k̃(x) is a Bernstein polynomial of
k(x) and μ is its valid approximate error bound. Note that the fully-connected
neural networks with sigmoid and tanh activation functions are Lipschitz con-
tinuous, and the estimation of Lipschitz constants for deep neural networks has
been studied in [14,31,34].

476 Z. Yang et al.

Maximal Safe Initial Region Computation. Since k̃(x)+ ε enclosures k(x),
the safety of the closed-loop system under the DNN controller k(x) can be guar-
anteed via the existence of barrier certificates for the closed-loop system under
the abstract controller k̃(x) + ε. From this observation, we try to compute an
MSIR Θγ and its corresponding barrier certificate Bγ(x), which can guarantee
the safety of the closed-loop system under the abstract controller k̃(x) + ε with
respect to Θγ .

Firstly, we consider how to predefine a suitable initial state set template Θγ

from the given initial set Θ. In what follows, we provide some parametric initial
state sets for two typical representations: Boxes and Euclidean ellipsoids (balls).

Box Template. Suppose that the box initial set Θ is represented as

Θ = {x ∈ R
n||xi − ci| ≤ bi},

where xc = (c1, · · · , cn)T is the center of the box, and bi ∈ R>0. Then, the
parametric initial set can be expressed as

Θγ = {x ∈ R
n|‖D−1(x − xc)‖∞ ≤ γ},

where D = diag(b1, · · · , bn) is a diagonal matrix.

Ellipsoid Template. Suppose that the ellipsoid initial set Θ is expressed as a
common representation:

Θ = {x ∈ R
n|x = xc + Av, ‖v‖2 ≤ 1},

where xc is the center of the ellipsoid, and the matrix A is nonsingular. Then
the parametric initial set can be expressed as

Θγ = {x ∈ R
n|x = x0 + γ Av, ‖v‖2 ≤ 1}

= {x ∈ R
n|‖A−1 (x − x0)‖2 ≤ γ}.

Without loss of generality, we can select the template of the parametric initial
sets by taking the form Θγ := {x ∈ R

n|g(x) ≤ γ, i = 1, . . . , m1} with γ ∈ R>0,
where g(x) is the polynomial used to defined the prescribed initial set Θ.

In order to enlarge the safe initial region by choice of Θγ , we maximize γ
while imposing the constraints for the existence of barrier certificates. Assume
that the barrier certificate B(x) is a polynomial of degree at most d, whose
coefficients form a vector space of dimension s(d) =

(
n+d

d

)
with the canonical

basis (xα) of monomials. Suppose the coefficients are unknown, and denote by
b = (bα) ∈ R

s(d) the coefficient vector of B(x), and write

B(x,b) =
∑

α∈Nn
d

bαxα =
∑

α∈Nn
d

bα xα1
1 xα2

2 · · · xαn
n ,

in the canonical basis. Thus, the problem of computing an MSIR Θγ of the
closed-loop system under the abstract controller k̃(x) + ε can be represented as
an optimization problem

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 477

γ∗
opt = maxb,γ γ

s.t. B(x,b) ≥ 0, ∀x ∈ Θγ ,
LfB(x,b) > 0, ∀x ∈ Ψ and B(x,b) = 0,
B(x,b) < 0, ∀x ∈ Xu.

⎫
⎪⎪⎬

⎪⎪⎭

(4)

Then, Sum-of-Squares (SOS) relaxation technique is applied to encode the
optimization problem (4) as a SOS program. In fact, given a basic semi-algebraic
set K defined by:

K = {x ∈ R
n | p1(x) ≥ 0, . . . , ps(x) ≥ 0},

where pj ∈ R[x], 1 ≤ j ≤ s, a sufficient condition for the nonnegativity of the
given polynomial f(x) on the semi-algebraic set K is provided as

f(x) = σ0(x) +
s∑

i=1

σi(x)pi(x), (5)

where σi ∈ Σ[x]d, 1 ≤ i ≤ s. Thus, the representation (5) ensures that the
polynomial f(x) is nonnegative on the given semi-algebraic set K.

Observing (4), the polynomial LfB(x,b) is involved with the uncertain vari-
able ε in the range [−μ, μ], which can be written as the constraint, ĥ(ε) ≥ 0
with

ĥ(ε) := (ε + μ)(μ − ε).

Thus, the problem (4) can be transformed into the following optimization
problem

γ∗ = maxb,γ γ
s.t. B(x,b) − σ(x)(γ − g(x)) ∈ Σ[x],

LfB(x,b) − λ(x)B(x,b) − ∑
j φj(x)hj(x) − ν(x, ε)ĥ(ε) − ε1 ∈ Σ[x],

−B(x,b) − ε2 − ∑
j κj(x)qj(x) ∈ Σ[x],

⎫
⎪⎪⎬

⎪⎪⎭
(6)

where ε1, ε2 > 0, the entries of σ(x), φj(x) κ(x) ∈ Σ[x], and ν(x, ε) ∈ Σ[x, ε],
and λ(x) ∈ R[x]. Note that ε1, ε2 are needed to ensure positivity of polynomials
as required in the second and third constraints in (4). Clearly, the feasibility of
the constraints in (6) is sufficient to imply the feasibility of the constraints in (4),
thus the optimum of (6) is a lower bound of the optimum of (4), i.e., γ∗ ≤ γ∗

opt.
The SOS program (6) is bilinear due to the product of the unknown coef-

ficients of (B(x,b), λ(x)) and (σ(x), γ), yielding a non-convex bilinear matrix
inequalities (BMI) problem. Fortunately, a Matlab package PENBMI solver [22],
which combines the (exterior) penalty and (interior) barrier method with the
augmented Lagrangian method, can be applied directly to obtain a numerical
solution of the problem (6). The solution γ∗,b∗ to problem (6) yields an MSIR
Θγ∗ and its corresponding barrier certificate B(x,b∗). It means that the closed-
loop system under the abstract controller k̃(x) + ε is safe, with respect to Θγ∗ .
Moreover, if the given initial set Θ is a subset of Θγ∗ , then the safety of the
closed-loop system under the DNN controller k(x) with respect to Θ is verified.
Otherwise, B(x,b∗) will be further refined via quadratic programming method.

478 Z. Yang et al.

Remark 3. The gap between the optima of problems (4) and (6) decreases as
increasing of degrees for the multiplier polynomials. The degree bound for the
multiplier polynomials is exponential with the number of variables x and the
degrees of the polynomials appearing in the semi-algebraic sets. In practice, we
set up a truncated SOS programming for (6) by fixing a priori (much smaller)
degree bound of all the unknown multiplier polynomials, to avoid high compu-
tational complexity.

Barrier Certificate Refinement. Consider the case in which the initial set Θ
is not a subset of the MSIR Θγ∗ . In this case, the barrier certificate B(x,b∗) can
succeed to separate the unsafe region Xu from Θγ∗ , but it may fail to separate
from Θ. In other words, B(x,b∗) can not be regarded as a truly candidate barrier
certificate with respect to Θ and Xu. Therefore, we will utilize the information
of B(x,b∗) to refine it, in order to obtain a new candidate barrier certificate that
can separate Θ from Xu. Consider the change in B(x,b∗) is expected as small
as possible, the step of the barrier certificate refinement can be represented as

min ‖b̂ − b∗‖22
s.t. B(x, b̂) ≥ 0 ∀x ∈ Θ,

B(x, b̂) < 0 ∀x ∈ Xu.

⎫
⎬

⎭
(7)

By investigating (7), the constraints are the ones involving universal quanti-
fiers. To avoid eliminating universal quantifiers directly, here we provide a relax-
ation technique to deal with (7), which is based on selecting sampling points. For
Θ and Xu, let us first construct rectangular meshes in Θ and Xu respectively,
with a mesh spacing r ∈ R+ (say r = 0.05). The resulting mesh point sets are
denoted as ΩΘ and ΩXu

, respectively.
It is known that for a continuously differentiable function φ(x) over a compact

domain D, the mean value theorem yields that

|φ(x + Δx) − φ(x)| ≤ nη‖Δx‖∞,

where x,x+ Δ ∈ Ω are chosen randomly, and η = supx∈D ‖∇φ(x)‖∞. Based on
the above observation, the following implications are satisfied:

B(xj , b̂) − δ1 ≥ 0, ∀xj ∈ ΩΘ =⇒ B(x, b̂) ≥ 0 ∀x ∈ Θ,

B(xj , b̂) + δ2 < 0, ∀xj ∈ ΩXu
=⇒ B(x, b̂) < 0 ∀x ∈ Xu.

}

where δi = nηir ∈ R>0, i = 1, 2 with η1 = supx∈Θ ‖∇B(x,b∗)‖∞ and η2 =
supx∈Xu

‖∇B(x,b∗)‖∞.
By using the above relaxation technique based on sampling points, (7) can

be relaxed as the following problem

min ‖b̂ − b∗‖22
s.t. B(xj , b̂) − δ ≥ 0, ∀xj ∈ ΩΘ,

B(xj , b̂) + δ < 0, ∀xj ∈ ΩXu
,

⎫
⎬

⎭
(8)

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 479

which is a typical quadratic programming problem and can be solved by state-
of-the-art solvers with great efficiency.

Now, the refined B̂(x) = B(x, b̂) can separate Θ from Xu, but may still not
satisfy the Lie derivative condition for barrier certificates. According to Theo-
rem 1, B̂(x) is not a truly barrier certificate for the closed-loop system under
the abstract controller k̃(x) + ε with respect to Θ and Xu. Next, the refined
B̂(x) will be further fed to guide the learner to retrain a new controller. To do
it, we first consider the additional constraint for the Lie derivative of B̂(x), and
apply barrier certificate guided reinforcement learning to compute a new DNN
controller.

4 Algorithm

In Sect. 3, we have elaborated on the iteration-based safe controller synthesis
method that iteratively co-synthesizes a DNN controller within the RL frame-
work and a polynomial barrier certificate via BMI solving. Briefly, we describe
the main implementation steps of our approach in the following Algorithm 2.

Algorithm 2. SRLBC: Safe Reinforcement Learning with Barrier Certificate
Input: The CCDS C; unsafe region Xu; maximum number of iterations maxIter
Output: Safe DNN Controller k
1: iter ← 0
2: B ← ⊥
3: while iter < maxIter do
4: k ← Learning(f, Θ, Xu, B)

5: ̂k, μ ← PolyInclusion(k)

6: Θ∗
γ , B(x,b∗) ← MaxSafeSet(f, ̂k, μ, Θ, Xu)

7: if Θ ⊆ Θ∗
γ then

8: return k
9: end if

10: B ← RefineBarrier(B(x,b∗), Θ, Xu)
11: end while

Algorithm 2 shows the iteration scheme of our safe controller synthesis, which
guides the experiment implementation. The procedure takes as inputs a CCDS
C, an unsafe region Xu, a maximum number of iterations maxIter, and returns
a safe DNN controller of a given architecture. In a pass of the iteration, the
implementation process has four steps as follows.

(i) Apply the RL method to train a DNN controller. The learner introduced in
Sect. 3.1 is implemented by Line 4 in Algorithm 2, and the barrier certificate
is initialized to be ⊥, which means that the learner trains a DNN controller
via classical reinforcement learning, without the aid of barrier certificates
in the initial pass;

480 Z. Yang et al.

(ii) For the closed-loop system under the DNN controller learned in Step (i),
compute a maximal safe initial region (MSIR), with which a barrier cer-
tificate exists. We use Bernstein polynomial approximation to compute a
polynomial abstraction for the learned DNN controller by Line 5, and then
compute an MSIR Θγ∗ and the corresponding barrier certificate B(x,b∗)
by Line 6;

(iii) Check the condition wether the MSIR Θγ∗ in Step (ii) contains the given
initial set Θ. If Θ ⊆ Θγ∗ , then we terminate the loop with a verified safe
DNN controller; otherwise go to Step (iv). This process refers to Lines 7–9;

(iv) Slightly modify the barrier certificate from Step (iii) so that it separates
the initial set and the unsafe region, and then go to Step (i) to learn a
new controller by encoding the refined barrier certificate into the reward
function. For this task, the barrier certificate B is refined via quadratic
programming by Line 10.

This inductive loop repeats until an MSIR enclosing Θγ and its corresponding
barrier certificate are computed or until a timeout is reached.

Remark 4. Our procedure is sound, i.e. a valid output from the verifier is prov-
ably correct. However, we cannot claim any completeness, since our procedure
might in general not terminate because the existence of the barrier certificate
is just a sufficient condition of the safety of the system, and such a barrier cer-
tificate may not exist indeed. Once the procedure fails, we may improve the
relaxation precision and then increase the possibility to find the barrier certifi-
cate by increasing the degree bound for the multiplier polynomials in the SOS
program (6).

Furthermore, an example is used to depict how our safe controller synthesis
algorithm works.

Example 1. Consider the Van der Pol system
[
ẋ1

ẋ2

]

=
[

x2

−x1 + 1
3x3

1 − x2 + u

]

with the domain Ψ = {x ∈ R
2 | −3 ≤ x1, x2 ≤ 3}. Our goal is to design a control

law k such that all trajectories of the system under u = k(x1, x2) starting from
the initial set

Θ = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 1.12}
will never enter the unsafe set

Xu = {x ∈ R
2 | (x1 + 1)2 + (x2 + 1)2 ≤ 1}.

We complete our goal by Algorithm 2, and provide the details here. At first,
we apply the reinforcement learning method to train the initial neural network
controller u = k0(x) in terms of the target of safety satisfiability, which is Step

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 481

(i) and refers to Line 4 in Algorithm 2, and then try to yield the barrier cer-
tificate B(x). We compute polynomial abstraction of DNN Controller k0(x) via
Bernstein polynomials which is Step (ii), where

k̃0(x) = 0.0142x1 + 0.0092x2 − 0.0205x2
1 + 0.0077x1x2 + 0.0340x2

2

+ 0.0246x3
1 + 0.0018x2

1x2 − 0.0820x1x
2
2 + 0.0435x3

2 + ε.
(9)

with ε ∈ [−0.05, 0.05], which is implemented by Line 5. Thus, the polynomial
abstraction technique can yield an abstract polynomial system.

Go on Step (ii) to compute a maximal safety region Θγ and the corresponding
barrier certificate B(x). In this case, we parameterize the initial set:

Θγ = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ γ}.

For the given abstract polynomial system with the parameterized initial set
Θγ , our goal is to maximize the radius γ subject to the existence of a barrier
certificate. By calling the PENBMI solver [22] we can obtain a barrier certificate
B0(x) with the maximal safe initial region Θ0 (Line 6 in our Algorithm 2), i.e.,

Θ0 = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 0.8132},

B0(x) = 11.716 + 22.8064x1 + 21.5368x2 − 4.5273x2
1 + 13.8084x1x2 + 3.0453x2

2.

(10)

Thus, the safety of the system with the controller k0(x) with respect to the set
Θ0 is guaranteed. Now the present controller k0(x) can not be safe for whole
initial set Θ, we continue to update controller and barrier certificate (Line 7–9).

Let k0(x) and B0(x) be the initial controller and the initial barrier certificate,
we perform the iterative framework to synthesize the controller subject to the
safety constraint. As shown in Fig. 3(a), the zero level set of B0(x) is the blue
dashed line. Observing Fig. 3(a), B0(x) can succeed to separate the unsafe region
Xu (the red circle) from Θ0 (the green dashed circle), but not separate from the
initial set Θ, which means that B0(x) can not be regarded as the truly barrier
certificate. Therefore, one may perturb the coefficients of B0(x) to obtain B̂0(x)
which can separate Θ and Xu. And this process corresponds to Step (iv) and
Line 10 of our Algorithm 2. The perturbed polynomial is represented as

B̂0(x) = 10.5590 + 22.9401x1 + 18.2448x2 − 0.8954x2
1 + 14.4971x1x2 + 1.1060x2

2.

As shown in Fig. 1(b), the zero level set of the barrier B̂0(x) (the blue dash)
separates Xu (the red circle) from Θ (the green circle). According to the concept
of barrier certificate and Theorem 1, B̂0(x) is not a truly barrier certificate,
since the condition of the Lie derivative of the barrier certificate is not satisfied.
Accordingly, by using the B̂0(x) and the initial controller k0(x), we then try to
retrain a control law with an additional constraint of the lie derivative for the
barrier certificate B̂0(x). Calling the learner module (Line 4), we update a new
control law k1(x) represented as a two-hidden layer sigmoid-based DNN with 20
neurons per layer by RL approach.

482 Z. Yang et al.

Xu

B0

Θ

Θ0

(a)

Xu

Θ

B0

B0

Θ0

(b)

B1

Θ

Xu

(c)

Fig. 3. This picture shows the iteration process of barrier certificate updating when we
learn the safe controller. The red circles stand for unsafe regions, the blue curves stand
for the zero level set of barrier certificates, and the green circles stand for the initial sets
and safe initial sets. Subfigure (a) describes the intermediate results of maximal safe
initial set Θ0 (the green dashed circle) with its associate barrier certificate B0 obtained
from Line 6 in Algorithm 2 at the first iteration. We slightly modify the barrier function
B0 to separate Θ and Xu by Line 10 and obtain B̂0 which is the blue solid curve shown
in Subfigure (b). Using B̂0 as a guide, a new controller is learned, from which a barrier
certificate B1 is generated as shown in Subfigure (c). It can be shown that B1 is the
real barrier certificate of the system. (Color figure online)

Repeating the above abstraction technique and solving the BMI problem for
finding the maximal safety initial set Θ1, we obtain the barrier certificate B1(x)
with respect to Θ1, i.e.,

Θ1 = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 1.2201},

B1(x) = 10.3661 + 22.6569x1 + 17.7852x2 − 0.9037x2
1 + 14.1832x1x2 + 0.9471x2

2.
(11)

It is easy to check that the original initial set Θ is now a subset of Θ1, which
means that B1(x) is a truly barrier certificate.

5 Experiments

In this section, we first depict an example of three dimension nonlinear contin-
uous system to show our algorithm by synthesizing a safe DNN controller for
it, and then present an experimental evaluation of our algorithm over a set of
benchmark examples by comparing with a DNN controller learning framework
called nncontroller in [39].

Example 2. Consider the continuous dynamical system
⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
x3 + 8x2

−x2 + x3

−x3 − x2
1 + u

⎤

⎦

with the domain
Ψ = {x ∈ R

3 |x2
1 + x2

2 + x2
3 ≤ 16}.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 483

Our goal is to design a control law k such that all trajectories of the closed-loop
system under u = k(x1, x2, x3) starting from the initial set

Θ = {x ∈ R
3 |x2

1 + x2
2 + x2

3 ≤ 1}

will never enter the unsafe set

Xu = {x ∈ R
3 | (x1 − 2.1)2 + (x2 − 2.1)2 + (x2

3 − 2.1) ≤ 1.82}.

It suffices to synthesize a control law k and a barrier certificate B(x) with
the maximal safe initial region Θγ such that Θ ⊆ Θγ . Suppose that the DNN
controller k is represented as a five-hidden layer sigmoid activated DNN with
30 neurons per layer. We first call the learner to train a DNN controller, and
then call the verifier to compute the maximal safe initial region Θγ and its cor-
responding barrier certificate B(x). After two iterations, we successfully obtain
a safe DNN controller, and the following barrier certificate

B(x) = 220.1981 − 45.7322x1 − 40.2831x2 − 218.4765x3 + 4.9575x2
1

+ 38.7288x1x2 − 9.8224x1x3 − 66.8398x2
2 + 17.2562x2x3 + 18.3967x2

3.

(12)

As shown in Fig. 4, the zero level set of the barrier certificate B(x) (the blue
surface) separates Xu (the red ball) from all trajectories starting from Θ (the
green ball). Therefore, the safety of the above system is verified.

Fig. 4. Phase portrait of the system in Example 2. The zero level set of the barrier
certificate B(x) (the blue surface) separates Xu (the red ball) from all trajectories
starting from Θ (the green ball). (Color figure online)

We have implemented a safe controller synthesis tool called SRLBC based
on Algorithm 2, with Tensorflow 1.14 for the DNN controller synthesis and a
Matlab package PENBMI [22] for barrier certificate generation. Table 1 shows the
performance evaluation of our SRLBC and nncontroller in [39] on 12 continuous

484 Z. Yang et al.

systems. All experiments are conducted on a machine running Windows 10 with
16 GB RAM, a 3.20 GHz AMD Ryzen 7 3700X CPU, and an NVIDIA GeForce
GTX 1650 super GPU.

In Table 1, the origins of these 12 examples are provided in the first column;
df denotes the maximal degree of the polynomials in the vector fields; nx denotes
the number of the state variables; L and N refer to the numbers of hidden layers
and the neurons per each hidden layer, respectively; t1 and t2 denote the time
spent by SRLBC and nncontroller in seconds, respectively; the symbol ′−′ means
that nncontroller was unable to return a safe DNN controller within 10,000 s.

Table 1. Performance evaluation

Examples df nx NNstructure SRLBC nncontroller

L N degB(x) t(s) NN-type BC t(s)

C1 [28] 2 2 4 20 2 54.77 2-10-1 20.52

C2 [6] 3 2 4 20 2 37.54 2-10-1 8.46

C3 [6] 3 2 4 20 2 35.99 2-10-1 6.77

C4 [27] 3 2 4 20 4 38.68 2-10-1 6.88

C5 [39] 3 3 5 30 2 56.21 3-10-1 32.19

C6 [20] 3 4 5 30 2 45.54 4-10-1 78.52

C7 [6] 3 4 5 30 4 40.82 4-10-1 184.85

C8 [32] 2 5 5 30 2 423.11 5-20-1 2217.41

C9 [38] 2 6 5 30 2 383.26 – –

C10 [4] 3 6 5 30 4 942.74 – –

C11 [21] 2 7 5 30 2 1829.46 – –

C12 [21] 2 9 5 30 2 6208.79 – –

Table 1 shows that for the 12 examples, our SRLBC manages to handle all
of them within 3 iterations, while nncontroller can only deal with 8 successfully.
Especially for the four examples from C9 to C12 whose dimensions exceed 5,
nncontroller fails to synthesize safe controllers within specified time bound after
various attempt. We have tried different network structures with the number
of hidden layers varies from 1 to 5 and the number of hidden neurons chosen
among {10, 20, 30, 40}, the nncontroller fails to train candidate DNN controllers
and barrier certificates within the time limit, whereas our SRLBC can yield safe
controllers, represented as five-layer sigmoid activated neural networks.

Consider the efficiency of our SRLBC and nncontroller in terms of the time
spent in synthesizing safe DNN controllers for shared examples. On average,
our SRLBC takes 91.58 s to synthesize a safe DNN controller while nncontroller
needs 323.2 s, which is about 3.53 times slower than our SRLBC. Despite the
network structures used for SRLBC is more complex than that for nncontroller,
and the number of neural network neurons of SRLBC is much more than that
of nncontroller, we could synthesize more efficiently.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 485

Obviously, our SRLBC scales better than nncontroller for the considered
examples. Although our SRLBC consumes a little more time than nncontroller
for the systems with dimension 2 or 3, our tool shows its advantage on time
consuming when handling the systems with dimension higher than 3 (C6-C8)
and its ability on examples C9-C12. Comparing with nncontroller which is also
a data driven approach, SRLBC inherits the advantage in learning efficiency
of reinforcement learning, whereas the size of the training data for nncontroller
increases exponentially with the dimension of the considered systems, which
greatly limits the scale of the problem to deal with. Beyond Table 1, we have
tried an example of nonlinear polynomial system [16] with dimension up to 12,
and SRLBC yields successfully a result in 54,314 s while nncontroller fails. It is
clear that our approach is able to attack large-scale problems.

During the experiment, we have observed that SRLBC obtains the near-
safe controllers at the first iteration for most examples, and the remaining work
is to refine barrier certificates slightly and use them to guide and adjust the
controllers. In fact, the numbers of the iterations in our experiments on the
benchmarks did not exceed 3 for all cases. These observations show that our
iterative scheme of safe reinforcement learning converges well in practice, because
the refinement of the controllers could utilize the intermediate learned results
before we get the final results. In addition, SRLBC could easily generalize to
deal with non-polynomial systems and it has successfully solved the classical
continuous Cartpole system [3], which would be presented in the future work.

6 Related Work

Our work on synthesizing DNN controllers for safety control of nonlinear systems
is mainly related to two categories of research, i.e. formal verification of nonlinear
systems with DNN controller and safe DNN controller synthesis. There has been
considerable research conducted in these areas because of the applications in
safety critical systems in recent years.

Formal Verification of Nonlinear Systems with DNN Controller. One
of the mainstream methodologies is through constructing over-approximations
to the reachable sets of the system trajectories under DNN controllers. And
the core technique first focuses on output range analysis of the neural network
components, then combines the output range with reachability analysis on the
dynamical systems. For instance, based on the output range analysis in [13],
Dutta et al. verified the feedback control systems with DNN controllers using
mixed-integer linear programming [12]. And they implemented the prototype
tool for the neural rule generation inside the tool termed as Sherlock, and used
it together with Flow* for computing the reach sets of the systems [10].

The difference of works on this direction lies in what kind of abstract domains
is adopted for output range analysis of the neural network components. A recent
attempt involves the work of Xiang et al. that computes the output ranges as
a union of convex polytopes [37]. For the piecewise linear systems with ReLU
neural network as the controller, they compute the output range of ReLU neural

486 Z. Yang et al.

network by a layer-by-layer approach. Dutta et al. propose an approach to
abstract the DNN by a local polynomial approximation along with rigorous error
bound, and then integrate it with a Taylor model-based flow pipe construction
scheme for continuous differential equations to derive the over-approximation of
the real reachable set [11]. Likely, Huang et al. present an approach to construct-
ing a polynomial approximation for a DNN controller using Bernstein polyno-
mials, and then integrate result with the plant to get the over-approximated
reachable set [18]. There is a different route for reachability of systems with neu-
ral network components proposed by Ivanov et al. and termed as Verisig [19].
It transforms the problem of verifying neural network controlled system into a
hybrid system verification problem by first transforming a sigmoid-based neural
network into an equivalent hybrid system and then composing it with the plant.

Instead of computing reachable sets, a different approach for verifying neural
network controlled systems is through barrier certificate synthesis. Tuncali et
al. synthesize candidate barrier certificates using simulation-guided techniques,
and then verify the overall system safety by checking the validity of the barrier
certificate conditions for the candidate [35]. The safety property was proofed, or
a counterexample was returned to updated candidate barrier certificates.

Safety Critical Controller Generation. Research works in this category
differ in: (1) the overall learning framework, e.g. reinforcement learning (RL)
or supervised learning; (2) the kind of safety certificate, e.g., control Lyapunov
function (CLF) or control barrier function (CBF) [2].

For CLFs or CBFs synthesis, a demonstrator-learner-verifier framework was
proposed in [29] to learn polynomial CLFs for polynomial nonlinear dynamical
systems; a special type of neural network was designed in [30] as candidates for
learning Lyapunov functions; a supervised learning approach was proposed in
[5] to learn neural network Lyapunov functions and linear control policies; data-
driven model predictive control (MPC) exploiting neural Lyapunov function and
neural network dynamics model was proposed in [12,25]. For multi-agent sys-
tems, barrier function has recently been applied for safe policy synthesis on
POMDP models [1]. The computer science community has dealt with the issue of
safe controller learning in different ways from above: for example, a logical-proof
based approach was proposed in [15] towards safe RL; a synthesis framework
capable of synthesizing deterministic programs from neural network policies was
proposed in [41] and so formal verification techniques for traditional software
systems can be applied. Compared with these works, [39] learn controllers based
on neural networks. To certify the safety property they utilize barrier certificates,
which are represented by DNNs as well. In this way, they train DNN controllers
and DNN barrier certificates simultaneously, achieving a verification-in-the-loop
synthesis. Liu et al. proposed a Recurrent Neural Network (RNN) framework
to synthesize feedback control policies for a system under STL specifications
[24]. The CBF was used to modify the control policies predicted by the RNN to
guarantee safety.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 487

7 Conclusion

In this paper, we have developed a novel scheme for synthesizing safe controllers
of nonlinear systems with control against safety constraints. It employs an iter-
ative architecture, where a learner trains DNN controllers using reinforcement
learning and a verifier checks them via computation of maximal safe initial
regions and the corresponding barrier certificates, based on polynomial abstrac-
tion and bilinear matrix inequalities solving. The key idea in this paper is to
use an alternating co-synthesis scheme of controllers and barrier certificates to
generate safe controllers, which could refine barrier certificates during iteration.
On the one hand, this synthesis scheme has inherited the higher learning effi-
ciency from RL technique than other data driven methods. On the other hand,
this iterative architecture could modify barrier certificates to obtain an adap-
tive one along with DNN controller retraining, and other verification-in-the-loop
synthesis methods are usually based on user-defined barrier functions. Further-
more, our BMI solving based barrier certificate generation is more efficient than
SMT based verification. The experimental results demonstrate that our method
is more scalable and effective than the existing DNN controller synthesis method
nncontroller.

References

1. Ahmadi, M., Singletary, A., Burdick, J.W., Ames, A.D.: Safe policy synthesis in
multi-agent POMDPs via discrete-time barrier functions. In: Proceedings of the
IEEE 58th Conference on Decision and Control (CDC), pp. 4797–4803. IEEE
(2019)

2. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada,
P.: Control barrier functions: theory and applications. In: Proceedings of the 17th
European Control Conference, (ECC), pp. 3420–3431 (2019)

3. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5),
834–846 (1983)

4. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-
ric barrier functions for dynamical systems using interval analysis. In: Proceedings
of the 53rd IEEE Conference on Decision and Control (CDC), pp. 753–758. IEEE
(2014)

5. Chang, Y.C., Roohi, N., Gao, S.: Neural Lyapunov control. In: Proceedings of
the Annual Conference on Advances in Neural Information Processing Systems
(NeurIPS), pp. 3245–3254 (2019)

6. Chesi, G.: Computing output feedback controllers to enlarge the domain of attrac-
tion in polynomial systems. IEEE Trans. Autom. Control 49(10), 1846–1853 (2004)

7. Davis, P.J.: Interpolation and Approximation. Dover Books on Mathematics. Dover
Publications, New York (1975)

8. Deshmukh, J.V., Kapinski, J., Yamaguchi, T., Prokhorov, D.: Learning deep neural
network controllers for dynamical systems with safety guarantees: Invited paper.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–7 (2019)

488 Z. Yang et al.

9. Duchoň, M.: A generalized bernstein approximation theorem. Tatra Mt. Math.
Publ. 49(1), 99–109 (2011)

10. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - a tool
for verification of neural network feedback systems: demo abstract. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC), pp. 262–263 (2019)

11. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol (HSCC), pp. 157–168 (2019)

12. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151–156 (2018)

13. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

14. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. arXiv preprint
arXiv:1906.04893 (2019)

15. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe
control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI), pp. 6485–6492 (2018)

16. Gao, S.: Quadcopter model. https://github.com/dreal/benchmarks
17. Garćıa, J., o Fernández, F., et al.: A comprehensive survey on safe reinforcement

learning. J. Mach. Learn. Res. 16(42), 1437–1480 (2015)
18. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of

neural-network controlled systems. ACM Trans. Embedded Comput. Syst. 18(5s),
106:1-106:22 (2019)

19. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC), pp. 169–178 (2019)

20. Jarvis-Wloszek, Z.: Lyapunov based analysis and controller synthesis for polyno-
mial systems using sum-of-squares optimization. Ph.D. thesis, University of Cali-
fornia (2003)

21. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice: Concepts. Implementation and Application, Wiley-Blackwell (2005)

22. Kočvara, M., Stingl, M.: PENBMI user’s guide (version 2.0) (2005). http://www.
penopt.com

23. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: Pro-
ceedings of the 4th International Conference on Learning Representations (ICLR)
(2016)

24. Liu, W., Mehdipour, N., Belta, C.: Recurrent neural network controllers for signal
temporal logic specifications subject to safety constraints (2020). https://arxiv.
org/abs/2009.11468

25. Mittal, M., Gallieri, M., Quaglino, A., Salehian, S.S.M., Koutńık, J.: Neural Lya-
punov model predictive control (2020). https://arxiv.org/abs/2002.10451

26. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1429 (2007)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
http://arxiv.org/abs/1906.04893
https://github.com/dreal/benchmarks
http://www.penopt.com
http://www.penopt.com
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2002.10451

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 489

27. Prajna, S., Parrilo, P.A., Rantzer, A.: Nonlinear control synthesis by convex opti-
mization. IEEE Trans. Autom. Control 49(2), 310–314 (2004)

28. Pylorof, D., Bakolas, E.: Analysis and synthesis of nonlinear controllers for input
constrained systems using semidefinite programming optimization. In: Proceedings
of the 2016 American Control Conference (ACC), pp. 6959–6964 (2016)

29. Ravanbakhsh, H., Sankaranarayanan, S.: Learning control Lyapunov functions
from counterexamples and demonstrations. Auton. Rob. 43(2), 275–307 (2019)

30. Richards, S.M., Berkenkamp, F., Krause, A.: The Lyapunov neural network: adap-
tive stability certification for safe learning of dynamic systems (2018). http://arxiv.
org/abs/1808.00924

31. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 2651–2659 (2018)

32. Sassi, M.A.B., Sankaranarayanan, S.: Stabilization of polynomial dynamical sys-
tems using linear programming based on bernstein polynomials (2015). arXiv
preprint arXiv:1501.04578

33. Squires, E., Pierpaoli, P., Egerstedt, M.: Constructive barrier certificates with
applications to fixed-wing aircraft collision avoidance. In: Proceedings of the
IEEE Conference on Control Technology and Applications (CCTA), pp. 1656–1661
(2018)

34. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the
2nd International Conference on Learning Representations (ICLR) (2014)

35. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proceed-
ings of the 55th Annual Design Automation Conference (DAC), pp. 30:1–30:6
(2018)

36. Turchetta, M., Kolobov, A., Shah, S., Krause, A., Agarwal, A.: Safe reinforcement
learning via curriculum induction. In: Proceedings of the Annual Conference on
Advances in Neural Information Processing Systems (NeurIPS), pp. 12151–12162
(2020)

37. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and safety verification for piecewise linear systems with neural network controllers.
In: Proceedings of the Annual American Control Conference (ACC), pp. 1574–1579
(2018)

38. Zeng, X., Lin, W., Yang, Z., Chen, X., Wang, L.: Darboux-type barrier certificates
for safety verification of nonlinear hybrid systems. In: Proceedings of the 2016
International Conference on Embedded Software (EMSOFT), pp. 1–10 (2016)

39. Zhao, H., Zeng, X., Chen, T., Liu, Z., Woodcock, J.: Learning safe neural network
controllers with barrier certificates. In: Proceedings of the International Sympo-
sium on the Dependable Software Engineering. Theories, Tools, and Applications
(SETTA), pp. 177–185 (2020)

40. Zhao, H., Zeng, X., Chen, T. Liu, Z., Woodcock, J.: Learning safe neural network
controllers with barrier certificates. Formal Aspects Comput., 1–19 (2021). https://
doi.org/10.1007/s00165-021-00544-5

41. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
686–701 (2019)

http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1501.04578
https://doi.org/10.1007/s00165-021-00544-5
https://doi.org/10.1007/s00165-021-00544-5

490 Z. Yang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems via Barrier Certificate Generation
	1 Introduction
	2 Preliminaries
	3 Synthesis of Safe Controller via Learning and Verification
	3.1 Training of Safe Controller
	3.2 Safety Verification with Barrier Certificates

	4 Algorithm
	5 Experiments
	6 Related Work
	7 Conclusion
	References

