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Abstract In recent years, the focus of microplastic research has begun to observe 
a shift from the marine towards terrestrial and freshwater environments. This is in 
response to a greater awareness of the predominance of land-based sources in 
marine microplastic contamination. In this regard, terrestrial and freshwater envi-
ronments are often perceived as conduits for microplastic particles to the oceans, 
but this overlooks substantial and important complexities associated with these sys-
tems, as well as the need to protect these ecosystems in their own right. This chapter 
focuses on several critical sources and pathways deemed to be highly important for 
the release of microplastics to the environment. These include road-associated 
microplastic particles (RAMP) and emissions related to agriculture that are, thus 
far, under-researched. Transfers and accumulations of particles within terrestrial 
and freshwater systems are also reviewed, including the state of knowledge on the 
occurrence of microplastics in different environmental compartments (air, water, 
sediments, biota). Methodological constraints are addressed, with particular focus 
on the need for greater harmonisation along all stages of sampling, analysis, and 
data handling. Finally, the chapter discusses the ultimate fate of particles released to 
terrestrial and freshwater environments and highlights critical research gaps that 
should be addressed to evolve our understanding of microplastic contamination in 
complex and dynamic environmental systems.
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4.1  Introduction

Recent research has begun to document widespread and pervasive contamination of 
terrestrial and freshwater environmental systems by microplastic particles. Several 
papers have now pointed out a dichotomy that exists: all plastic is produced on 
land – and the majority of plastic is consumed and disposed of on land – and yet the 
primary focus for microplastics research still concentrates predominately on the 
marine environment (e.g. Blettler et al. 2018; Dris et al. 2015; Horton et al. 2017a, 
b; Lambert and Wagner 2018; Mai et al. 2018). This is where microplastic contami-
nation was first observed (Carpenter et al. 1972; Carpenter and Smith 1972; Shiber 
1979) and is highlighted as the eventual recipient for microplastic particles in the 
environment. Evidence has shown that microplastics are distributed widely across 
the global ocean and may have negative impacts on the marine ecosystem, particu-
larly in remote and sensitive regions (Avio et al. 2015). Despite this, a focus on 
marine microplastics misses several important characteristics of their release and 
geographical distribution that are integral to efforts to reduce environmental con-
tamination. First and foremost, the majority of microplastic particles are released 
through land-based sources (Rochman 2018). A thorough assessment of these 
sources is therefore essential to identify actions to effectively reduce microplastic 
emissions. This is frequently referred to through the ‘turning off the tap’ analogy 
(Boucher and Friot 2017; Evans-Pughe 2017); however, this touches upon a second 
important detail. Many land-based processes, such as fluvial and atmospheric trans-
port, are described as transfers of plastic from land to sea. They should not, how-
ever, be considered as pipelines of plastics to the sea: the transport of microplastic 
particles from their source to the marine environment is expected to be highly com-
plex. Particles released on land likely encounter a range of dynamic environments 
which can transform particles and may also retain them across a range of times-
cales, thus acting as a sink of microplastic pollution, and with similar potential 
impacts as reported for the marine systems. A thorough understanding of these pro-
cesses is still lacking.

One of the main barriers to establishing this understanding is the paucity of high- 
quality and comparable data. This is underpinned by methodological complexities 
associated with the analysis of microplastic contamination in a range of environ-
mental compartments and matrices. Here, a marine-freshwater skew also exists: the 
majority of harmonisation and standardisation efforts by international bodies and 
working groups primarily focus on the marine environment (e.g. Frias et al. 2018; 
GESAMP 2015, 2016, 2019; Isobe et al. 2019). It is important that methods estab-
lished for the marine environment are not uncritically transferred to terrestrial and 
freshwater samples. Sampling for microplastics should be closely tied to the spe-
cific research questions at hand. There exists a wealth of methodological approaches 
outside of the plastic research field that may be tailored to include the capture of 
microplastic particles and which would generate samples that also correspond to a 
range of relevant hydrological, geomorphological, and aeolian processes. Moreover, 
in many cases, differences in the type, quantity, and ratios of non-plastic organic and 
inorganic sample constituents complicate analytical methods and may require the 
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development of new approaches to prepare samples. These new methods require 
validation to ensure the production of comparable datasets. Recent efforts to cryst-
allise the quality requirements for data reporting have included non-marine sample 
types (e.g. Koelmans et  al. 2019). These describe several good practices which 
should be applied to all assessments of microplastic contamination: ensuring that 
sampling is representative, including both blanks and relevant recovery tests, verify-
ing particles as microplastic through chemical analyses, and considering the sources 
of error in the data.

This chapter will draw together existing research from terrestrial and freshwater 
environments to address the current state of knowledge and identify important gaps 
in our understanding of sources and processes related to microplastic contamination 
across a range of spatial and temporal scales. This will include a review of available 
data on the occurrence of microplastic particles in selected focused environments: 
(1) agricultural systems; (2) urban environments, with a particular focus on road- 
derived microplastics; (3) river systems; (4) lakes; and (5) the atmosphere.

4.2  Microplastics in Terrestrial Environments

The majority of all plastics ever produced – approximately 60% or 4900 Mt. – have 
been discarded and are now present in either landfills or the environment (Geyer 
et al. 2017). Establishing the proportions that have been directly (e.g. littering, spills, 
discharges) or indirectly (e.g. leaching) released to the environment, released to land 
or the ocean, or released across different spatial and temporal scales is difficult. 
Plastics used in marine industries (e.g. aquaculture), lost in spills at sea, or directly 
discarded to the ocean (e.g. littering from ships or at the coast) are likely to represent 
a small proportion of the total plastics entering the ocean each year. Estimates cur-
rently place this at around 5–20%, indicating that the majority of marine plastic 
waste comes from land-based sources (e.g. Mehlhart and Blepp 2012; Zhou et al. 
2011). This chapter addresses microplastic contamination, which is typically associ-
ated with more issues due to methodological difficulties, greater heterogeneity, and 
a lack of clear definitions. The proportion of plastic waste that is released to the 
environment in the micro-size range is essentially unknown. It is also expected that 
many plastic items may fragment into micro- or nano-sized particles when exposed 
to different environmental conditions, but this has not been demonstrated experi-
mentally for many plastic polymer or product types or in a range of relevant environ-
mental settings. Hence, the rates of particle release and associated particle size 
distributions are not well-understood. The upshot of this is that sources and path-
ways of microplastic to the terrestrial environment are typically poorly defined.

In recent years, more research has begun to focus on terrestrial environments in 
regard to microplastic contamination, although the total number of publications 
remains far below that for the marine environment. This section focuses on agricul-
tural and urban environments, as settings that are likely to be important for the 
environmental release or impact of microplastic particles. Figure 4.1 presents some 
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Fig. 4.1 Conceptual diagram showing important sources or release pathways of microplastic 
(blue text) and processes related to fate and transport of particles (black text) in atmospheric (a), 
terrestrial (b), and freshwater (c) systems
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of the sources and release pathways of microplastics, as well as key processes asso-
ciated with their fate and transport. In this chapter, sources refer to direct releases of 
microplastic to the environment – for example, the production of tyre wear particles 
during vehicle use – whilst release pathways describe processes or practices that 
release microplastic to the environment but are not the primary source. Land appli-
cation of sewage sludge is one example of this, where microplastics in sludge are 
derived from the culmination of a diverse set of sources that occurs prior to environ-
mental release.

4.2.1  Agriculture

Agricultural environments have recently been identified as recipients of consider-
able plastic debris, typically concentrated into micro- and nanoplastic size fractions 
(ECHA 2019). This results from the culmination of a wide range of different sources 
and release pathways of small plastic particles to farmed soil. These include (1) the 
application of sewage sludge-derived biosolids on land as a soil conditioner and 
fertiliser; (2) the release of small plastic fragments from an array of plastic products 
used in agriculture, termed plasticulture; (3) the use of synthetic polymers in micro-
encapsulation technologies for agrochemicals and seed coatings; (4) the breakdown 
of plastic litter from roadsides or the farm environment; and (5) the use of water that 
contains microplastics for irrigation.

Many studies have reported the enrichment of microplastic particles in sewage 
sludge (e.g. Li et al. 2018; Lusher et al. 2018; Mahon et al. 2017; Xu et al. 2020). 
Wastewater treatment plants (WWTPs) receive small plastic particles from a diverse 
range of sources including households, industry, and stormwater. Many of the treat-
ment processes employed to purify the water are also effective at trapping many of 
these small particles; reported removal efficiencies range between 64.4 (Liu et al. 
2019a, b, c) and 99.9% (Magnusson and Norén 2014; Vollertsen and Hansen 2017). 
Much of the material that is retained in the WWTP is transferred to the solid sludge 
phase. One technique to handle the generation of this solid by-product from the 
wastewater treatment process is the application of treated sludge (biosolids) to land 
to amend soil properties such as pH, soil texture, and nutrient content. This is par-
ticularly relevant for agricultural land – for example, 76% of land application of 
biosolids in Norway is to farmed soils (Lusher et al. 2018). However, this results in 
the release of microplastic particles to agricultural environments. Estimates indicate 
that this is responsible for the annual emission of 63,000–430,000 and 
44,000–300,000 tonnes of microplastics to European and North American farm-
lands, respectively (Nizzetto et al. 2016).

Plasticulture is likely to represent an important source of microplastics to agri-
cultural soils. One of their main applications is mulching: thin films are placed 
above or below the ground to amend soil conditions, improve water use efficiency, 
and reduce pests and weeds with the aim of increasing crops yield. Further uses of 
thin films include greenhouse and tunnel systems and as wrappings for hay bales. 
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Additionally, plastic netting may be used in plasticulture systems to protect crops 
from pests. Microplastic debris may be formed during and after use as a result of 
environmental conditions and agricultural practices that promote degradation or 
mechanical fragmentation. Typically, it is difficult to remove 100% of these plastic 
products from the fields following use (Steinmetz et al. 2016). Geographic regions 
where high-intensity plasticulture converges with stronger environmental degrada-
tive forcing (e.g. higher solar insolation, increased variability between day and night 
temperature, higher humidity) are likely to represent hotspots for microplastic con-
tamination from this source, such as in the Mediterranean agricultural belt and 
China (Espí et al. 2006; Liu et al. 2014; Scarascia-Mugnozza et al. 2012). Estimates 
associated with the release of microplastics from plasticulture are largely missing 
but may be as high as 24% of the total mass of the product when it is removed from 
the land (Dong et al. 2013). Future projections for Chinese farmlands estimate that 
mulching-derived plastic contamination in the soil may reach as high as 2000 kg 
hm−2 after 141 years of repeated application (Dong et al. 2013).

Advancements in agricultural technologies include the incorporation of synthetic 
polymers in the encapsulation of seeds and agrochemicals. This utilises polymerisa-
tion, coacervation, coating, and micro- and nano-encapsulation technologies to 
build a polymer matrix or thin coating, which may include non-biodegradable and 
insoluble plastic polymers such as polyethylene, polystyrene, polyurethane, or 
polyesters (França et al. 2019). Through this approach, fertiliser products are coated 
or encapsulated in a polymer shell which regulates the release of the active ingredi-
ent over a period of several months through the process of diffusion. Once the fer-
tiliser is entirely released, the shell remains, representing a direct source of small 
plastic particles to the environment (Sinha et al. 2019). Seeds may also be coated in 
a polymeric film that incorporates germination-enhancing products such as fungi-
cides or insecticides (Accinelli et al. 2019). The inclusion of these components into 
a film reduces the dispersion of agrochemicals that may otherwise be applied in 
powder form during sowing. The use of these technologies is expected to input 
between 5400 and 39,700 tonnes of microplastic to agricultural environments in the 
EU each year (ECHA 2019). Despite this, no published study has observed this 
release under field conditions.

Additional sources and release pathways for microplastic to agricultural environ-
ments include potential inputs derived from plastic litter, irrigation systems, and 
atmospheric deposition. Plastic litter within farms and from the surrounding envi-
ronment may fragment due to environmental degradation, leading to the release of 
particles to soils. Atmospheric deposition, through windthrow of particles from 
adjacent systems or transport from further distances, may also introduce microplas-
tic to farm environments. This is likely to be particularly relevant for low-density 
polymer types (Rezaei et al. 2019). Finally, irrigation has been proposed as a poten-
tial release pathway including the spreading of microplastic contaminated waters or 
through degradation of plastic pipe systems (Zhang and Liu 2018). Estimates for the 
release of microplastics from these sources are entirely unknown.

Only a small number of studies have thus far investigated microplastic loadings 
in agricultural environments. Table 4.1 presents the plastic exposures and reported 
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concentrations of these studies. The highest values are associated with fields under-
going multiple plastic exposure routes, greenhouse systems, sewage, irrigation, 
plastic litter, and proximity to roads, and are located in China (Chen et al. 2020; 
Zhang and Liu 2018). Fields that have undergone multiple applications of sewage 
sludge also present high soil microplastic concentrations (Corradini et  al. 2019). 
Fields undergoing mulching with plastic films exhibit variable concentrations across 
two orders of magnitude (Huang et al. 2020; Liu et al. 2018; Lv et al. 2019a; Zhou 
et al. 2019), but this range may be linked to both the intensity and temporal frame 
of the plastic-cropping systems (Huang et al. 2020). Piehl et al. (2018) studied a 
farm in Germany that had no history of plasticulture or sludge application to soils. 
Despite this, low levels of microplastic contamination were observed, potentially 
derived from atmospheric deposition. The concentrations reported by Piehl et al. 
(2018) were several orders of magnitude below those reported by other studies. This 
suggests that agricultural practices involving plastics can significantly increase 
microplastic contamination in soils; however, several methodological disparities 
also exist between studies which may explain some of the observed variance. 
Differences in agricultural practices resulting from regional, seasonal, or crop-type 
variability may also result in large variations in soil microplastic concentrations. For 

Table 4.1 Published, peer-reviewed studies of microplastics in agricultural systems

Location

Main plastic exposure 
and other sources/
pathways Reported concentrations References

China Mulching film; plastic 
litter

Mean: 78 and 62.5 particles kg−1 in 
shallow and deep soils, respectively

Liu et al. 
(2018)

China Mulching film; 
irrigation, plastic litter

Mean: 571 and 263 particles kg−1 in 
mulched and non-mulched fields, 
respectively

Zhou et al. 
(2019)

China Mulching film Mean: 80.3 ± 49.3, 308 ± 138.1, and 
1075.6 ± 346.8 particles kg−1 in fields 
with 5, 15, and 24 years of continuous 
mulching, respectively

Huang et al. 
(2020)

China Plastic films Mean: 10.3 ± 2.2 particles kg−1 Lv et al. 
(2019a)

China Greenhouse system; 
sewage sludge, irrigation

7100–42,960 particles kg−1 (mean: 
18,760)

Zhang and 
Liu (2018)

Chile Sewage sludge 0.6–10.4 particles g−1 (approximately 
equivalent to 600–10,400 particles kg−1)

Corradini 
et al. (2019)

Spain Sewage sludge Mean: 5190 and 2030 particles kg−1 in 
fields with and without sludge application, 
respectively

van den Berg 
et al. (2020)

China Various: household 
sewage, textiles, plastic 
netting, plastic bags, 
roads

320–12,560 particles kg−1 (mean: 2020) Chen et al. 
(2020)

Germany None; windblown litter Mean: 0.34 ± 0.36 particles kg−1 Piehl et al. 
(2018)
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example, different crops and environmental settings benefit from different forms of 
plasticulture and different countries implement a range of restrictions on the use of 
sewage sludge-derived biosolids.

Soil represents a complex matrix from which to isolate microplastic particles. 
Methods for analysing small plastic particle sizes are costly and time-consuming 
and require additional processing steps to clean up soil samples. For this reason, few 
studies examine the smallest microplastic size fractions, and, therefore, current 
assessments may represent an underestimate. Methods for analysing environmental 
nanoplastic contamination are largely non-existent, and complex soil matrices 
likely present an additional analytical challenge. Hence, there are no studies report-
ing nanoplastic contamination in soil environments, and so estimations of the con-
tributions from agricultural products that contain or are expected to generate 
nanoplastics have not yet been possible. This is despite the possibility that nanoplas-
tic particles could negatively influence soil functioning (Benckiser 2019).

The distribution of microplastic particles within agricultural environments is 
expected to be driven by a complex range of processes. Agricultural practices are 
likely to be highly relevant; in particular, the intensity and spatial scales associated 
with the use of plastic and plastic-containing products, the efficiency of plasticul-
ture removal and waste handling, and the extent of ploughing or tilling of the land. 
This will govern the initial spread of particles across land and within soil profiles. 
Beyond this, processes related to wind erosion (Rezaei et al. 2019), bioturbation 
(Huerta Lwanga et al. 2017; Maaß et al. 2017; Yu et al. 2019), and water-mediated 
transport (Keller et al. 2020; O’Connor et al. 2019) are expected to transfer particles 
both within and from agricultural environments. Further research is necessary to 
document and quantify these processes under relevant field conditions.

4.2.2  Urban Environments

Urban environments can be expected to represent important domains for the release 
and cycling of plastic debris, based on the concentration of plastic production, con-
sumption, and waste generation activities in these areas. Urban zones are character-
ised by higher population densities and may also comprise industrial areas that are 
involved in the production of plastics or manufacturing of plastic products. Releases 
of microplastics may include emissions from industry via air or water, the break-
down of larger plastic items (such as litter) due to environmental degradation or 
mechanical stress, and shedding from textiles such as clothing and home furnish-
ings. Despite this, very few studies have thus far reported microplastic concentra-
tions in samples from urban terrestrial environments. Fuller and Gautam (2016) 
identified poly(vinyl) chloride, polyethylene, and polystyrene microplastic in soils 
from an industrial area in Sydney, Australia, as part of a method development case 
study. Plastic debris was also noted in urban soil profiles from Stuttgart, Germany, 
but the size (macro-, meso-, micro-) of these particles was not described in detail 
(Lorenz and Kandeler 2005). Three studies have documented microplastics in urban 
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dust samples from sites across Iran (Abbasi et al. 2017, 2019; Dehghani et al. 2017). 
Microplastic fibres and fragments were also observed at concentrations of approxi-
mately 2.9–166 particles g−1, and spatial patterns of microplastic abundance were 
correlated with factors such as the location of commercial or industrial districts, 
population density, and traffic load. Particles exhibited a range of colours and mor-
phologies, representing a heterogeneous mix of potential sources. Importantly, par-
ticles potentially derived from tyre rubber and other road sources dominated the 
samples. Several additional studies have pointed towards roads as important sources 
of microplastics (e.g. Kole et al. 2017; Sommer et al. 2018). Hence, this section will 
focus on road environments as a critical component of urban systems regarding 
microplastic contamination and releases.

4.2.2.1  Roads

Roads represent complex anthropogenic environments comprising artificial ground, 
a high degree of mechanical abrasion from vehicle tyres on the road surface, and 
emissions of a range of contaminants from exhaust, tyres, the road surface, and 
other debris. Runoff from road environments is typically characterised by high lev-
els of particulates and may be contaminated by a range of heavy metals (e.g. zinc, 
copper, cadmium, nickel) and organic pollutants (e.g. polycyclic aromatic hydro-
carbons, organophosphates, octylphenols, phthalates) (Grung et al. 2017; Hallberg 
et al. 2014; Meland et al. 2010a, b; Meland and Rødland 2018). Road runoff has 
received renewed interest in recent years due to the presence of particles with poly-
mer components; it has been identified as one of the largest sources of microplastic 
particles in the environment (Baensch-Baltruschat et  al. 2020; Kole et  al. 2017; 
Wagner et al. 2018). In particular, particles created by the wear and tear of car tyres 
are estimated to be the single largest source of microplastics in several countries, 
such as Norway, Sweden, and Denmark (Lassen et al. 2015; Magnusson et al. 2016; 
Sundt et al. 2014; Sundt et al. 2016; Vogelsang et al. 2019); although, these estima-
tions are based on emission factors and need to be supported by peer-reviewed 
experimental or environmental evidence. Similar estimations using emission fac-
tors have been conducted in China, estimating that close to 55% of all primary 
microplastic emissions are derived from tyres (Wang et al. 2019a, b). The authors 
also compared their emissions to Norway and Denmark and calculated that the 
release in China is 85 times higher than in Norway and 400 times higher compared 
to Denmark. For this review we use the term road-associated microplastic particles 
(RAMP), first introduced in Vogelsang et al. (2019). RAMP comprises several cat-
egories of particle types: tyre-wear particles (TWP), road-wear particles from 
polymer- modified bitumen (RWPPMB), and road-wear particles from road marking 
(RWPRM) (Vogelsang et al. 2019). The RAMP terminology differs from the tire and 
road wear particle (TRWP) terminology, used in several other studies (Baensch- 
Baltruschat et  al. 2020; Klöckner et  al. 2019), by only including particles with 
plastic components whilst TRWP may also include particles without plastic 
components.
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In general, very little research has thus far been conducted on RAMP.  It is 
expected that large particles from road runoff will accumulate at the roadside or be 
captured in gully-pots, whilst smaller particles have the potential to spread further 
and be transported with the runoff (Vogelsang et al. 2019). However, these assump-
tions are based on the behaviour of road runoff particles in general, and further 
research on the emission of RAMP from road environments is needed.

A small number of studies have attempted to measure concentrations of TWP in 
the terrestrial environment. Fig. 4.2 presents the range of concentrations that have 
thus far been reported (Baensch-Baltruschat et  al. 2020; Bye and Johnsen 2019; 
Rødland et al. 2020; Wik and Dave 2009). Tyres are composed of a complex mix of 
ingredients including natural and synthetic rubbers, mineral oils, fillers, antioxi-
dants, and antiozonants (Wik and Dave 2009). Hence, they are difficult to quantify 
using chemical analyses. Nearly all the current studies have used tracers to estimate 
the concentration of TWP, such as different benzothiazoles and zinc that are present 
in tyres, whilst some others have instead measured concentrations of tyre-related 
polymers. The most commonly studied matrices include road dust from road 

Fig. 4.2 Reported concentrations of TWP in terrestrial and freshwater environments. Each data 
entry is a mean value and red dots represent outliers. The figure summarizes a number of different 
studies from 1997 to 2020. (These are further described in Baensch-Baltruschat et al. 2020; Bye 
and Johnsen 2019; Rødland et al. 2020; Wik and Dave 2009)
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surfaces, roadside soils, sediments from sedimentation basins, and river sediments. 
The studies have a wide geographic spread and represent different traffic volumes. 
Moreover, they employ a wide range of different analytical approaches, so compari-
sons between studies should be approached with caution (Rødland 2019).

Concentrations of TWP in the environment vary by several orders of magnitude 
(Fig. 4.2). This variability has a spatial component, related to proximity to the road 
environment and different environmental matrices. For example, concentrations of 
TWP in road dust differed between road surfaces outside tunnels (700–124, 
000 mg kg−1) and inside tunnels (2700–210,000 mg kg−1) (Wik and Dave 2009). 
Moreover, Bye and Johnsen (2019) measured TWP in tunnel wash water from 
Smestad tunnel in Oslo (annual average daily traffic (AADT): 66,322) and found 
4038 mg kg−1 of TWP. This corresponded to the accumulation of TWP since the 
previous tunnel wash – a period of 60 days – and a production of nearly 3 kg of 
TWP per day. Concentrations for road runoff material also ranged between an order 
of magnitude: 12–179 mg kg−1 (Wik and Dave 2009). In roadside soil, the highest 
concentrations were found closest to the road, ranging between 400 and 
158,000 mg kg−1 at 0 m, with considerably lower concentrations from 1 to 30 m 
from the road (0–900 mg kg−1) (Baensch-Baltruschat et al. 2020; Wik and Dave 
2009). One study also demonstrated the accumulation of TWP in roadside snow 
(563 mg L−1; Bauman and Ismeyer 1998). In road sedimentation basins, the highest 
concentrations were found in the sediments, 350–130,000 mg kg−1 (Klöckner et al. 
2019; Wik and Dave 2009), and lower concentrations were found in water, 
2.3 mg L−1 (Wik and Dave 2009). One study has looked at the retention of TWP in 
a soil retention filters and reported a concentration of 150,000 mg kg−1 (Klöckner 
et al. 2019). A study of microplastic particles in road de-icing salt (Rødland et al. 
2020), used in areas with cold winter climate to ensure traffic safety, also found 
TWP in the salt, coming from the production sites and/or roads nearby the salt col-
lection sites. However, the concentrations are very low compared to the contribution 
from tire wear itself, only 0.77 mg kg −1 salt.

These data include some discrepancies in the analytical approach. For example, 
Eisentraut et  al. (2018) used thermal extraction desorption gas chromatography- 
mass spectrometry (TED-GC-MS) to measure the amount of styrene-butadiene rub-
ber (SBR), a synthetic polymer, from sediments in a road runoff treatment. They 
recorded values of between 3.9 and 9.3 mg g−1 SBR in their samples. The approxi-
mate concentration of SBR in common tyres is 11.3% (Eisentraut et al. 2018). This 
probably varies a lot between different tyre brands and types of tyres (e.g. summer 
and winter tyres, studded and non-studded tyres); however, it can be used to calcu-
late the concentration of TWP. This gives a result of 34.5–82.0 mg kg−1 for runoff 
sediments.

In addition to these studies, rubber particles potentially derived from tyre wear 
have been reported for snow samples from several sites in the Swiss Alps, Bremen, 
and Svalbard and from ice floes in the Fram Strait (Bergmann et al. 2019). This 
implies that TWP may be mobilised by atmospheric transport processes. However, 
the methods used in the study could not provide confirmation of TWP occurrence, 
and suspected particles were reported based upon their morphology.
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Other components of RAMP are wholly under-researched. A single peer- 
reviewed publication reported RWPRM in sediments from the River Thames, UK 
(Horton et al. 2017a). No studies have recorded their occurrence in terrestrial sam-
ples. Furthermore, no studies have thus far measured the concentrations of RWPPMB 
alone in the environment. More research on the occurrence of RAMP in the terres-
trial environment is needed to establish the relative contributions from different 
components and identify the scale of emissions from road environments.

4.2.3  Occurrence of Microplastics in Terrestrial Organisms

Very few studies have thus far reported the occurrence of microplastic particles in 
terrestrial organisms. Entanglement and incorporation of plastic into nests have 
been reported for both urban and agricultural crows in California, USA (Townsend 
and Barker 2014). Anthropogenic material, most commonly composed of plastic, 
was observed in 85.2% of nests, but this was typically in the size range of meso- or 
macro-plastic. Ingestion of microplastics by terrestrial birds in Shanghai, China, has 
been reported by Zhao et al. (2016), where plastic fibres and fragments accounted 
for 62.6% of litter items identified in digestive tracts. Carlin et al. (2020) observed 
an average of 6.22 microplastic particles present in the gastrointestinal tracts of 
birds of prey from central Florida, although many of these were identified to be 
rayon, which is sometimes excluded from microplastic counts as it is not a true 
synthetic polymer. It has been noted that microplastics now appear to be ubiquitous 
in the gut contents of bird species (Holland et al. 2016). Only a single study has 
documented the occurrence of microplastics in a terrestrial macroinvertebrate under 
field conditions. Panebianco et al. (2019) observed concentrations of 0.07 ± 0.01 
particles g−1 tissue in three species of edible snails (H. aperta, H. aspersa, and 
H. pomatia) from Italy. Despite the current paucity of data on the uptake of micro-
plastics by terrestrial organisms, numerous laboratory studies have demonstrated 
ingestion of microplastics by a range of species and have investigated related 
impacts. This is addressed in more detail in Chap. 8: Ecotoxicology of Plastic 
Pollution.

4.3  Pathways to Freshwater Environments

Most inputs of microplastics to freshwater systems can be characterised as release 
pathways  – emissions are typically not direct sources and have instead travelled 
through other systems first. There are a small number of sources of microplastic to 
freshwater environments, such as the in situ fragmentation of plastic litter, point 
discharges from plastic industries, and the generation of micro-sized particles of 
polymeric paint or plastics from boats or other aquatic infrastructures. This section 
describes five key pathways to freshwater environments: spread from agricultural 
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environments, releases from littering and landfill leachate, discharges from urban 
drainage systems, road runoff, and WWTP effluents.

4.3.1  Transfers from Agricultural Environments

Agricultural soils have been highlighted as potentially highly significant reservoirs 
of microplastics, which may actually exceed loadings currently observed in the 
global ocean (Nizzetto et al. 2016). The potential for agricultural microplastic con-
tamination to propagate across wider spatial scales is, therefore, of particular inter-
est in terms of global microplastic patterns and cycling. Processes such as windthrow, 
surface runoff, throughflow, and leaching are likely to be relevant for the transfer of 
plastic particles from soil systems, dependent upon factors such as particle size, 
morphology, and surface charge (Hurley and Nizzetto 2018). A small number of 
studies have demonstrated some of these processes experimentally within soil pro-
files (e.g. Keller et al. 2020; O’Connor et al. 2019), but, thus far, no published, peer- 
reviewed study has quantified the release of microplastics from soils and, especially, 
agricultural environments. A report from Ranneklev et al. (2019) presented prelimi-
nary data of microplastics in water discharged from a field amended with sewage 
sludge into a sedimentation pond connected to a stream in Norway. Approximately 
2 particles L−1 were observed in the discharge water; however, the flow of discharge 
water from the field was not quantified. Nevertheless, this indicates that agricultural 
soils represent a release pathway for microplastic to freshwater systems. Based on 
the potential scale of microplastic contamination associated with agriculture, fur-
ther research is urgently required to quantify transfers to the wider environment.

4.3.2  Transfers from Urban Environments

4.3.2.1  Littering and Leaching of Plastic Waste

Estimates for the mismanagement of plastic waste have been used as a means of 
assessing emissions of plastic to the marine environment (e.g. Jambeck et al. 2015). 
The transport pathways connecting this land-based release of plastic to the oceans 
are described as inland waterways, wastewater outflows, and wind action. Hence, 
the transfer of litter from populated or industrial areas to freshwater systems is often 
assumed. The generation of litter can be from littering practices or accidental 
releases during stages of waste handling, such as municipal waste management 
(Kum et al. 2005; Muñoz-Cadena et al. 2012). This litter may already be in the size 
range of microplastic particles or may act as a source of microplastics through the 
breakdown of larger plastics into micro-sized fragments. This fragmentation can be 
caused by weathering processes that chemically alter and weaken plastic polymers 
or through mechanical abrasion. Movement via water is likely to be an important 
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process for the transport of litter from urban terrestrial environments to nearby 
freshwater systems and is addressed in more detail in Sect. 4.3.2.2. Wind action has 
also been identified as an important process distributing microplastics around the 
environment and is described in Sect. 4.5.

An additional release pathway associated with this form of (micro)plastic con-
tamination is landfill leachate. Thus far, two published, peer-reviewed studies have 
reported concentrations of between 0.42 and 24.6 particles L−1 in leachate from 
municipal solid waste landfills in China (He et al. 2019; Su et al. 2019). Fewer par-
ticles were detected in older landfill systems, which has been linked to increased 
consumption and disposal of plastic in recent years (Su et al. 2019). Leachate dis-
charges may emit microplastics to nearby soils or to freshwater systems.

4.3.2.2  Urban Drainage

Urban drainage systems designed to handle surface water runoff during precipita-
tion events represent a key pathway linking urban and freshwater environments. 
Larger plastic items, typically litter, are often captured by drainage systems, and a 
body of research exists around documenting this process and engineering solutions 
to reduce blockages or prevent release into waterways (Armitage 2007; Armitage 
et al. 2001; Armitage and Rooseboom 2000; Marais et al. 2001, 2004). As described 
above, urban environments are expected to represent hotspots for microplastic con-
tamination. Urban drainage is likely to act as a conduit for these particles to enter 
freshwater systems.

Several studies identify combined sewer overflows (CSOs) as a potentially 
important source of microplastics to freshwater systems (Ballent et al. 2016; Eriksen 
et al. 2013; Hurley et al. 2018), but very little work has attempted to quantify the 
scale of release or investigate the composition of microplastics. UNEP (2009) spe-
cifically identify sewage treatment and CSOs as one of the eight key land-based 
sources of marine litter, highlighting the important role that they are expected to 
play as a pathway for particles from urban environments. CSOs are a feature in 
many urban drainage systems; they allow for the direct release of untreated waste-
water during periods of increased precipitation to prevent the system from backing 
up. Dris et al. (2018) sampled three CSOs in Paris, France, during a storm event. 
Very high levels of synthetic fibres (up to 190,000 fibres L−1) and fragments (up to 
3100 fragments L−1) were reported. These results were higher than those observed 
for wastewater and stormwater alone, and it was suggested that this could be due to 
the accumulation of particles within the system during dry weather periods, which 
may then be resuspended once the CSOs are activated (Dris et al. 2018). This would 
represent a pulse of very high concentrations of microplastic released into rivers 
during storm conditions.

Microplastics have also been observed in stormwater ponds (Liu et al. 2019a, 
2019b; Olesen et al. 2019). These receive runoff from a range of urban environ-
ments and aim to retain particles. The role of these systems in conveying microplas-
tics to recipient water bodies – often freshwater systems – has not yet been quantified. 
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These ponds do show potential for accumulating microplastic particles in their sedi-
ments, which may act as a temporary sink (Liu et al. 2019b). However, a diverse 
range of polymer and particle types has been reported including many which might 
not be expected to settle out to sediments.

4.3.2.3  Road Runoff

As discussed in Sect. 4.2.2.1, there are a limited number of studies that have inves-
tigated RAMP, and this includes the pathways from land to freshwater systems. The 
highest concentrations of TWP in environmental samples are found close to the 
road environment: from road dust and soil at the roadside. Lower concentrations 
have been reported from environments further from the road (Fig. 4.2). Values for 
freshwater environment vary considerably: between 36 and 179,000 mg kg−1 for 
river sediments and 1.6 and 36 mg L−1 for surface water (Baensch-Baltruschat et al. 
2020; Unice et al. 2013; Wik and Dave 2009). However, there may be large varia-
tions in river water as well, especially due to the input during rainfall, as seen in the 
study by Kamata et  al. (2000), where they reported TWP concentrations of 
2200–5200 mg kg−1 during a storm flow. However, this demonstrates that transfers 
to freshwater systems do occur. Comparing the concentrations found in river water 
and water from sedimentation ponds to river sediments and sediments from sedi-
mentation ponds, the current data provide clear indications that TWP will accumu-
late in the sediments. Additionally, transport of TWP from the road to freshwater is 
expected to be limited in areas where there is soil, sediment, and vegetation between 
the road and the recipient water body, as TWP is more likely to be retained.

Direct releases from the road environment to freshwaters are likely to occur. For 
example, particles may be released from bridges passing over freshwater via splash-
ing or direct water outlets. Additionally, some larger roads have in-built drainage 
systems that collect and transport road runoff material and release it directly into a 
freshwater recipient. Many of these systems employ gully-pots which are expected 
to trap larger particles, but they rarely include sedimentation ponds or treatment 
systems to remove particulate and contaminants from runoff waters. The retention 
of TWP and other RAMP constituents in gully-pots is expected to be limited 
(Vogelsang et  al. 2019); hence, direct discharges to freshwater environments are 
likely to represent an important pathway for RAMP release. Tunnel wash water 
represents a third direct discharge pathway. All road tunnels are washed regularly in 
order to maintain traffic safety and to avoid damage to technical instruments. The 
frequency of these tunnel wash events differs, usually determined by the number of 
cars passing through per day (AADT). In between these wash events, the tunnel is 
typically dry, and, therefore, there is a limited release of runoff from the tunnel. 
During a tunnel wash, large volumes of water are used, and this is collected by the 
tunnel drainage system. In some cases, the water passes through sedimentation and 
filtration treatment systems, but in other instances, it may be directly discharged to 
receiving water bodies. For example, Norway has over 1200 road tunnels, the third 
highest value globally (Vegkart, 2020). Only a small fraction of these tunnels 
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receives any kind of treatment of the tunnel drainage water, and most release the 
runoff directly into a water recipient (Rødland and Helgadottir 2018). Several stud-
ies have documented high levels of particulate matter in tunnel wash water (Hallberg 
et al. 2014; Meland et al. 2010a, b; Meland and Rødland 2018); however, there are 
very few that investigate concentrations of TWP or other microplastics in this 
matrix. It is expected that tunnel wash waters may be highly enriched in RAMP. This 
is an area of research that should be addressed in future studies.

4.3.2.4  Wastewater Treatment Plant (WWTP) Effluents

Wastewater treatment plants (WWTPs) typically discharge treated effluents directly 
into recipient water bodies. This has the potential to represent an important release 
pathway for microplastics to freshwater environments. As discussed in Sect. 4.2.1, 
WWTPs receive microplastics from a diverse range of sources. Many of these are 
captured by wastewater treatment processes and transferred to the sewage sludge 
phase (64.4–99.9%). Despite this, total discharges from WWTPs are significant, 
and so this remaining percentage is expected to represent a significant release path-
way for microplastics across temporal scales (Carr et al. 2016; Lv et al. 2019b; Sun 
et al. 2019).

Several studies have now provided an estimation of this release. The average 
concentration of microplastic in treated effluents generally falls below 1 particle 
L−1; however, large WWTPs can process several million litres of wastewater each 
day, resulting in daily emissions that are significant (Gatidou et al. 2019; Sun et al. 
2019). For example, Mason et al. 2016a, b estimated that on average approximately 
four million microplastic particles were released each day from a single plant, in a 
study of 17 WWTPs in the USA. This study had a lower size limit of detection of 
125 μm. Studies that go below this report far higher concentrations in the lowest 
size fraction (<20 μm), so the number of particles that are released can be expected 
to be far higher (e.g. Simon et al. 2018). The release of microplastics by WWTPs is 
further supported by studies that have documented significant increases in fluvial 
microplastic concentrations downstream from WWTP effluent releases (e.g. 
Estahbanati and Fahrenfield 2016; Kay et  al. 2018; Vermaire et  al. 2017). The 
release of microplastics from WWTPs can be expected to vary through time and 
space. Smaller, rural WWTPs process far smaller volumes of wastewater per day 
but may also have low trapping efficiencies for microplastic particles (e.g. Wei et al. 
2020). It is also of interest to capture the influence of precipitation events on micro-
plastic release by WWTPs, where plants may release pulses of untreated wastewater 
into recipient waterbodies. Moreover, approximately 80% of the world’s wastewater 
is emitted without sufficient treatment (UNESCO 2017), for which the potential 
microplastic release is unknown.

Fibres are commonly reported to be the dominant particle type present in WWTP 
effluents (Mason et al. 2016a, b; Ruan et al. 2019; Yang et al. 2019). A single gar-
ment can shed more than 1900 fibres per domestic laundry wash, resulting in >100 
fibres L−1 of laundry effluent (Browne et al. 2011). Many different treatment steps 
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are employed by WWTPs globally, with capture rates ranging from 0 to 99.9% 
(Zhang and Chen 2020). The efficacy of these clean-up steps is expected to differ 
across the spectrum of particle sizes and morphologies (Carr et al. 2016; Lusher 
et al. 2019; Sun et al. 2019). This is particularly relevant for fibrous particles, which 
have been noted as the most challenging microplastic type for removal in wastewa-
ter due to their high length to width ratio and potential to curve and bend (Ngo et al. 
2019). In some cases, the presence of microplastics can actually exhibit a negative 
impact on the efficiency of wastewater treatment processes (Zhang and Chen 2020), 
further complicating their removal.

It is important to note that comparing studies of microplastic releases from 
WWTP is challenging, as the methodologies used in each study, from sample col-
lection, sample processing, and the size range of particles may differ substantially, 
and no harmonised methodology has yet emerged. There are also different 
approaches to sampling microplastic particles in streams receiving WWTP efflu-
ents, many of which may not capture very small microplastic particles. Excluding 
the smaller fraction of microplastics from studies may result in underestimating the 
microplastics released from WWTPs as they may be less likely to be captured by 
treatment processes (Lusher et al. 2019). Further research is required to quantify the 
scale of microplastic release by WWTP effluents.

4.4  Microplastics in Freshwater Systems

4.4.1  Microplastics in Rivers

Fluvial systems comprise running bodies of water that connect terrestrial, lacus-
trine, glacial, and marine environments. They represent important long-range trans-
port pathways and act as conduits for suspended sediments and contamination 
through the landscape. Rivers and streams are expected to be highly complex and 
dynamic regarding the accumulation and transfer of microplastic particles. As has 
been established in the previous section, fluvial environments are connected, with 
many sources and release pathways for microplastic particles, including both point 
and diffuse releases across different spatial and temporal scales. Numerous studies 
have now documented microplastic contamination in rivers or streams (Scherer 
et al. 2020).

Variation is observed in the microplastic contamination reported within river sys-
tems. This spatial and temporal heterogeneity is not common across all studied 
catchments. These differences point towards some of the complexity associated 
with river systems. For example, some studies report a common longitudinal pattern 
of increasing microplastic concentrations with distance downstream (e.g. Jiang 
et al. 2019; Shruti et al. 2019), which likely represents a culmination of microplastic 
sources and pathways. In contrast, other studies show a less clear-cut pattern of 
microplastic abundance, especially in highly urbanised systems (e.g. Hurley et al. 
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2018). River sediments, on average, present higher concentrations than overlying 
waters (Li et al. 2020) and may act as a temporary store for microplastic particles 
(Castañeda et al. 2014). However, relating microplastic abundance in moving waters 
to that in more static sediments is complicated.

The different methodological approaches to sampling fluvial environments make 
data comparability challenging. Many variations exist between samples; for exam-
ple, methods of sampling (sediment grabs, sediment cores, nets, pumps, etc.), sam-
ple matrices (surface waters, water column, sediments, etc.), particle size fractions, 
laboratory analytical methods (sample purification, density separation, pore sizes of 
filtration approaches, etc.), and reporting units (particles m−2, m−3, L−1, kg−1, etc.) 
(Blettler et  al. 2018). Table  4.2 presents a selection of studies reporting fluvial 
microplastic contamination that utilise a range of different approaches. Based on 
this degree of discrepancy between methodologies, it is difficult to partition the 
observed differences in reported concentrations between methodological and envi-
ronmental factors. This is further hampered by the wide range of potential controls 

Table 4.2 Selected studies of microplastic contamination in river systems that utilise a range of 
different sampling and analytical approaches.

Location Matrix
Sampling 
method

Reported 
concentrations

Sample 
volume Particle sizes References

Rivers in 
Tibetan 
Plateau, 
China

Surface 
water

Bulk 
water

483–967 particles 
m−3

30 L >45 μm Jiang et al. 
(2019)

Pear 
River, 
China

Surface 
water

Plankton 
net

0.57–0.71 particles 
L−1

18,860–
138,134 L

160 μm–5 mm Fan et al. 
(2019)

Rhine 
River, 
Europe

Surface 
water

Manta 
trawl

892,777 particles 
km−2

4634 m3 300 μm–5 mm Mani et al. 
(2015)

Antua 
River, 
Portugal

Surface 
water

Surface 
water 
pump

58–193 particles 
m−3

n.r. 55 μm–5 mm Rodrigues 
et al. 
(2018)

Marne 
River, 
France

Surface 
water

Manta 
trawl

5.7–398 particles 
m−3

n.r. 80 μm–5 mm Dris et al. 
(2018)

Pearl 
River, 
China

Sediment Grasp 
bucket

685 particles kg−1 n.r. >100 μm Fan et al. 
(2019)

Beijiang 
River, 
China

Sediment Stainless 
steel 
shovel

178 ± 69–544 ± 107 
particles kg−1

Triplicates 
of 30 g per 
site, 8 sites

1 μm–5 mm Wang et al. 
(2017)

Thames 
River, 
UK

Sediment Stainless 
steel 
scoop

18.5 to 66 particles 
100 g−1

n.r. 1–4 mm Horton 
et al. 
(2017a, b)

Antua 
River, 
Portugal

Sediment Van Veen 
Grab

100 to 629 kg−1 n.r. 55 μm–5 mm Rodrigues 
et al. 
(2018)
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on microplastic release and distribution in river systems including varying hydro-
logical and geomorphological conditions, density and proximity of sources and 
release pathways, catchment characteristics and land use, anthropogenic modifica-
tions such as dams, and seasonal variability in microplastic releases and river char-
acteristics (Blettler et al. 2018; Mai et al. 2019; McCormick et al. 2016). Furthermore, 
it has been suggested that existing assessments of riverine microplastic contamina-
tion may miss significant variability due to their selected spatial and temporal scales 
(Stanton et al. 2020).

In dynamic systems such as rivers, there is a need to examine how microplastic 
distributions change across spatial and temporal scales and in response to different 
controls. Figure 4.1 presents some of the processes likely to be relevant for micro-
plastic transport in river systems. For example, microplastics can settle in riverbeds 
but may be resuspended during high energy events, such as floods, and transported 
further along the river (Hurley et al. 2018). The extent and controls of this remobili-
sation are essentially unknown (Alimi et  al. 2018), and only a small number of 
studies have begun to investigate important hydrological controls on particle reten-
tion and transport (e.g. Ockelford et al. 2020). It is assumed that the smaller the 
microplastic particle, the lower its retention in river systems based upon the lower 
flow velocities required for entrainment (Besseling et  al. 2017). Connectivity 
between river channels and the overbank zone during flood events may lead to depo-
sition or mobilisation of microplastic particles. Seasonal variability is also likely to 
play an important role in some systems. Watkins et al. (2019) identified that hydro-
logical differences between spring high flow and summer low flow were the domi-
nant factor determining microplastic concentrations in two streams in New York, 
USA. These studies suggest that the hydrodynamics of the river strongly impact 
microplastic distributions and emissions to the marine environment (Besseling et al. 
2017; McCormick et al. 2016). Furthermore, although more attention is typically 
directed to larger river systems, smaller streams should also be investigated as in 
many cases they are the primary interface between land, usage of plastics, and 
drainage networks (Dikareva and Simon 2019). Microplastic contamination of 
headwater streams has been reported (Hurley et al. 2018), demonstrating the perva-
sive nature of fluvial microplastic contamination.

4.4.2  Microplastics in Lakes

Microplastics were first recorded in a lake environment in 2012 (Faure et al. 2012). 
Since then, 36 additional published studies have investigated the occurrence of 
microplastics in the waters or sediments of lakes, globally. The majority of these 
studies can be broadly grouped into three key locations: Great Lakes system, 
European lakes, and Chinese lakes (Fig. 4.3). Lakes may receive microplastic par-
ticles from a wide range of potential sources or release pathways, including WWTP 
effluents (Uurasjärvi et al. 2020), industrial discharges (Eriksen et al. 2013), fisher-
ies (Wang et al. 2018; Yuan et al. 2019), and inflowing rivers (Ballent et al. 2016; 
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Corcoran et al. 2015). They represent complex environmental systems that have the 
potential to transport, disperse, or accumulate particles according to an array of dif-
ferent processes (Fig. 4.1).

Methodological disparities complicate efforts to compare findings from different 
studies. This includes the field sampling procedure, which has been shown to result 
in significant differences between reported microplastic concentrations for different 
sampling apparatus types (Uurasjärvi et al. 2020). Further variation in the particle 
sizes classes analysed introduces additional uncertainty. The lakes investigated also 
represent a spectrum of lake and catchment sizes and types. Hence, it is difficult to 
determine whether differences between studies are mainly derived from the meth-
odological approach or to a higher extent relate to environmental factors. Despite 
this, variability between spatial or temporal concentrations within single studies 
that apply one methodology indicates that environmental factors are important in 
governing levels of microplastic contamination (Nan et  al. 2020; Scherer et  al. 
2020). It is notable that despite possible methodological difference, the presence of 
microplastics has been reported in all lakes studied thus far, even in remote loca-
tions (Free et al. 2014; Zhang et al. 2016a, b).

Assessments of surface waters report concentrations ranging from 0.21 (Fischer 
et al. 2016) to 34,000 particles m−3 (Yuan et al. 2019). Low-density plastic types 
such as polyethylene and polypropylene are commonly reported as the dominant 
microplastic types (Sighicelli et al. 2018; Wang et al. 2018; Xiong et al. 2018). This 

Fig. 4.3 Map of published, peer-reviewed studies of microplastic occurrence in lake waters or 
sediments (a) includes the broad geographic grouping of the three key areas for lake microplastic 
research. The total number of studies published each year is shown in b, showing results up to 
February 2020
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concurs with the expected buoyant properties of these polymer types. Fibres are also 
commonly reported (Anderson et  al. 2017; Wang et  al. 2018), despite typically 
being composed of polymer types that are denser than water. Several studies show 
high concentrations close to population centres and point towards the surface cur-
rents generated by prevailing winds as an important process governing microplastic 
distributions at the water surface (Fischer et  al. 2016; Free et  al. 2014; Migwi 
et al. 2020).

Lake sediment concentrations vary between studies. In smaller lakes, concentra-
tions of microplastics in lake sediments have been shown to reflect processes influ-
encing surface water distributions, such as prevailing wind or proximity to inputs, 
suggesting that denser polymer types undergo transport through the lake prior to 
sedimentation (Vaughan et al. 2017). In larger lake systems, a lack of correlation 
between surface water and sediment concentrations is often reported (Yuan et al. 
2019), but this may be due to the spatial resolution of sampling campaigns. River 
tributaries have been identified as a depositional environment for microplastics as 
energy conditions change during the transition into the lake environment (Ballent 
et al. 2016). Lenaker et al. (2019) demonstrated that partitioning between surface 
waters, sub-surface waters, and sediments occurred at a density threshold of 
1.1 g cm−3 in a North American freshwater lake system. Despite this, low-density 
polymer types are sometimes observed in lake sediments (e.g. Sruthy and Ramasamy 
2017). This is contrary to the expected buoyancy of these particles but may be 
explained by processes such as biofouling that increases particle bulk density (Chen 
et  al. 2019). Lake sediments also have the potential to accumulate and preserve 
microplastic particles through processes of sedimentation and burial. This has been 
reported for Lake Ontario (Corcoran et al. 2015); Hampstead Pond, London, UK 
(Turner et al. 2019); and Donghu Lake, Wuhan, China (Dong et al. 2020).

4.4.3  Occurrence of Microplastic in Freshwater Organisms

To assess the status of freshwater systems, there has been a long tradition to use 
macroinvertebrates as indicator species. They represent a diverse group of organ-
isms that show tolerance and sensitivities towards different stressors, present differ-
ent feeding strategies, inhabit different environments, and have a range of lifespans 
(including long life cycles allowing for accumulation of contaminants). Research 
has now begun to investigate macroinvertebrates as a measure for microplastic 
contamination.

The majority of studies on freshwater macroinvertebrates has been conducted in 
the laboratory to measure the ecotoxicity of different polymers and particles types. 
Only a comparatively small number of studies have documented the occurrence of 
microplastics in macroinvertebrates in environmental samples (Akindele et  al. 
2019; Hurley et al. 2017; Nan et al. 2020; Nel et al. 2018; Su et al. 2018; Windsor 
et al. 2019a). These investigate a range of organisms including mayflies, caddisflies, 
gastropods, clams, and shrimp. All of the 20 different investigated species of six 
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classes: Insecta, Clitellata, Bivalvia, Amphibia, Malacostraca, and Gastropoda were 
found to contain microplastic particles. The investigated sites covered lakes, river 
deltas, urban rivers, and small streams. Concentrations vary from 0.07 to 5 particles 
individual−1, 0.01 to 0.042 particles mg−1 d.w., and 0.0003 to 1.12 particles mg−1 
w.w (Akindele et al. 2019; Hurley et al. 2017; Nan et al. 2020; Nel et al. 2018; Su 
et al. 2018; Windsor et al. 2019a). At present, there is insufficient data to draw con-
clusions regarding differences in microplastic uptake based on different feeding 
traits, trophic interactions, or microplastic particle size. However, it has been sug-
gested that generalist species are more likely to ingest microplastic than predators 
(Scherer et al. 2018) and that non-selective feeders are more likely to ingest micro-
plastic particles than selective feeders (Scherer et  al. 2017). Fibres are the most 
commonly reported particle type (e.g. Akindele et al. 2019; Hurley et al. 2017; Nan 
et al. 2020; Su et al. 2018), but it is not known whether this reflects the feeding 
behaviour of macroinvertebrate species or the dominant particle type present in the 
local environment.

These studies have thus far applied several different methods for separating 
microplastic from organisms. These include alkaline hydrolysis (KOH or NaOH), 
digestion with hydrogen peroxide, acid digestion (HNO3), and combined approaches 
(KOH + H2O2). Some of the studies rely on visual assessment of microplastic par-
ticles only – two thirds verify a subsample of particles using chemical analytical 
techniques. Since most macroinvertebrates are small, and the majority of their food 
items are thereby also small, a visual analysis may not be sufficient to capture the 
full-size spectrum of plastic particles that may be ingested. There is also an absence 
of quality assurance and quality control measures such as including both blank and 
spiked samples in many of the studies, emphasising the need for methodological 
improvements.

A larger number of studies have reported the occurrence of microplastic in fresh-
water fish (Andrade et al. 2019; Biginagwa et al. 2016; Horton et al. 2018; Jabeen 
et al. 2017; Phillips and Bonner 2015; Sanchez et al. 2014; Silva-Cavalcanti et al. 
2017). Over 50 species of fish have been analysed for microplastic ingestion under 
field conditions thus far. This has mostly been documented for riverine specimens, 
but studies have also been conducted in lakes (Biginagwa et al. 2016) and a storm-
water pond (Olesen et al. 2019). Concentrations range from 0 to 65 microplastic 
particles individual−1. It is important to note, however, that most studies only inves-
tigate the gut content so total concentrations are not known. Although, it is expected 
that only small microplastic particles have the potential to pass gut membranes. A 
single study found no plastic particles in the gut contents of fish: northern pikes, 
roach, and bream from Lake Geneva (Faure et al. 2012). The majority of studies 
perform a visual examination of the gastrointestinal tract or digest the gut contents 
using KOH or H2O2; however, small fish may be freeze-dried and digested (e.g. 
Olesen et al. 2019), and one study has also documented the occurrence of polyeth-
ylene and polystyrene in liver samples digested using sodium hypochlorite (e.g. 
Collard et al. 2018). Some trends have been reported. For example, McGoran et al. 
(2017) found that benthic-feeding fish ingested more microplastics (75%) than 
pelagic-feeding fish (20%) in the Thames River. Moreover, Horton et  al. (2018) 
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observed that microplastics in gut content was positively correlated with fish size, 
which is in turn typically associated with sex. The reported microplastic burden on 
freshwater fish species may also represent an underestimate due to the lower size 
limit of the studies; Roch et al. (2019) reported that the majority of microplastic 
ingested may be below 40 μm. This is supported by the high concentrations reported 
when using high-resolution μFT-IR imaging methodologies (e.g. Olesen et al. 2019).

Thus far, there are no studies that document the occurrence of RAMP in organ-
isms under field conditions. Several studies have demonstrated the uptake of haz-
ardous compounds associated with tyres during laboratory toxicity testing, which 
are summarised in Table  4.3. However, only a single study was able to confirm 
uptake of tyre particles by any of the organisms (Redondo-Hasselerharm et  al. 
2018); on average between 2.5 and 4 tyre tread particles were ingested by freshwa-
ter benthic macroinvertebrates. No published, peer-reviewed studies, in the field or 
laboratory, have yet looked for ingestion of RWPRM or RWPPMB.

Table 4.3 Published, peer-reviewed studies confirming uptake of hazardous compounds due to 
TWP in freshwater organisms based on laboratory exposures. Due to difficulties in finding the 
TWP in the environment, many studies have used lab-made tyre particles (TP) in their toxicity 
tests. These can be made in different ways, ground tyres or tyre scrap (granulates: TPGR), cryo- 
fractured particles (TPCF), particles abraded from the tyres with different rasps or steel files (TPAB), 
or road simulators (TPRS)

Type of tyre 
material

Particle 
size Concentration Organisms References

TPGR 10–
586 μm

0, 0.1, 0.3, 1, 3, 10% 
sediment d.w.

Asellus aquaticus
Gammarus pulex
Tubifex spp.

Redondo- 
Hasselerharm 
et al. (2018)

Tyre leachate, 
TPRS

10–80 μm 50,000–
100,000 mg L−1

10% dilution
50,000–
100,000 mg L−1

100% dilution

Daphnia magna
Xenopus laevis

Gualtieri et al. 
(2005a)

Tyre leachate, 
TPGR

<590 μm 100,000 mg L-1 
0.1–100% dilution

Aedes albopictus
Aedes triseriatus

Villena et al. 
(2017)

Tyre leachate, 
TPCF

n.r. 50,000–
100,000 mg L−1

0–100% dilution

Xenopus laevis Gualtieri et al. 
(2005b)

Tyre leachate, 
TPCF

n.r. 50–1400 mg L−1 Xenopus laevis Mantecca et al. 
(2007)

Tyre leachate, 
TPAB

n.r. 250–16,000 mg L−1 Daphnia magna Wik and Dave 
(2005)

Tyre leachate, 
TPAB

n.r. 900 mg 900 ml−1

44 °C, 72 hours
Daphnia magna Wik and Dave 

(2006)
Tyre leachate, 
TPAB

n.r. 10, 100, 1000, 
10,000 mg L−1

Leaching 5–11 days

Daphnia magna
Ceriodaphnia dubia
Danio rerio
Pseudokirchneriella 
subcapitata

Wik et al. 
(2009)

(continued)
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4.5  Microplastics in the Atmosphere

The potential for microplastic occurrence in the atmosphere above both land and sea 
is as yet largely unexplored. Processes of initial entrainment, localised updraft, con-
vective mixing and advection, horizontal conveyance, and settling are expected to 
be relevant for the suspension, dispersion, transport, and deposition of particles 
across spatial scales (Fig. 4.1). These processes are likely affected by the size, mor-
phology, and density of plastic particles. For example, particle size influences the 
movement of particles by wind at the land-air interface. Larger particles may move 
in a rolling motion, known as ‘creep’, whilst smaller particles may be transported 
through saltation motion, hopping along the land surface, or by suspension, based 
upon thresholds for particle motion and entrainment (Raupach and Lu 2004). 
Obstacles in the landscape may also represent temporary stores for microplastic 
particles, as has been demonstrated for terrestrial plants (Liu et al. 2020a).

Atmospheric deposition represents a pathway to terrestrial and freshwater envi-
ronments. Several studies have reported deposition rates of between 0 and 11,130 
particles m−2 day−1 (Allen et al. 2019; Cai et al. 2017; Dris et al. 2016, 2017; Klein 
and Fischer 2019; Liu et al. 2019a, b, c, d; Wright et al. 2020; Zhou et al. 2017); 
however, methodological differences, including discrepancies in the particle size 
classes analysed, hinder comparisons between datasets. For most studies, deposi-
tion appears to be higher in urban areas, which is likely associated with the quantity 
and proximity of sources. However, Klein and Fischer (2019) report higher concen-
trations in rural areas, which they attribute to the influence of forest canopy textures 
in combing out suspended particles. Rayon, polyamides, and polyesters are the 
dominant polymer types associated with fibrous microplastic, whilst polyethylene, 
polypropylene, and polystyrene are regularly reported for other particles types. For 
particle types such as fragments and films, studies typically report a higher deposi-
tion of microplastics concentrated in the smallest size categories and associated 
with lower-density polymer types. This demonstrates the influence of particle char-
acteristics on atmospheric transport. For fibres, however, larger particles are com-
monly observed, and particles are composed of higher-density polymer types. Here, 

Type of tyre 
material

Particle 
size Concentration Organisms References

Spiked 
sediments, 
TPGR

n.r. 83,800 mg kg−1 Rana sylvatica Camponelli 
et al. (2009)

Spiked 
sediments, 
TPRS

<150 μm 10,000 mg kg−1 Chironomus dilutes
Hyalella azteca

Panko et al. 
(2013)

Direct 
exposure, TPAB

Tyre leachate, 
TPAB

<500 μm
<500 μm

0–15,000 particles 
ml−1

0.125,000 particles 
ml−1

Hyalella azteca
Hyalella azteca

Khan et al. 
(2019)

Table 4.3 (continued)
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shape likely plays a dominant role in initial entrainment, transport, and deposition, 
where the irregular form of fibres encourages continued suspension. This has been 
demonstrated by Abbasi et  al. (2019) who analysed urban dust from Asaluyeh 
county in Iran and found that, whilst deposited dusts were composed of a diverse 
range of particles types, suspended dusts contained only fine or fibrous particles. 
Furthermore, several studies of atmospheric deposition of microplastics report 
fibres as the dominant particle shape (e.g. Wright et al. 2020; Zhou et al. 2017; Dris 
et al. 2017). It has now been estimated that between 7.64 and 33.76 tonnes of fibrous 
atmospheric microplastics were generated globally during the year 2018 (Liu 
et al. 2020b).

It is difficult to quantify the role of atmospheric deposition as a pathway for 
microplastics to freshwater systems, due to the influence of multiple potential 
sources of microplastic contamination which complicates the assessment of indi-
vidual inputs (Free et al. 2014). However, a recent study of atmospheric contamina-
tion of glacial ice shed some light on the potential contribution of atmospheric 
deposition. Ambrosini et al. (2019) found 74 ± 28 microplastics kg−1 of supraglacial 
sediments found on the glacier surface, which indicate a baseline level of contami-
nation for that region. Further research is required to quantify the rates of deposition 
across different spatial and temporal scales. Moreover, the cryosphere represents a 
vastly understudied environmental compartment, which may yield insights into 
baseline atmospheric deposition rates and the dynamics of long-range transport 
(Windsor et al. 2019b).

Factors such as precipitation and wind speed have been positively correlated 
with microplastic deposition in a remote catchment in the Pyrenees (Allen et al. 
2019). Both rain and snowfall events led to increased deposition of particles, where 
event occurrence and intensity were found to be more important than the duration of 
precipitation. This is supported by a recent study identifying high concentrations of 
microplastics in snow samples from Europe and the Arctic (Bergmann et al. 2019).

Tracking air mass trajectory through atmospheric modelling has successfully 
demonstrated medium-range transport of microplastic particles over an extended 
sampling duration (Allen et  al. 2019); however, transport over longer distances 
within a regional context was also likely to have occurred. This is further studied by 
an assessment of microplastics in the sea air, which used the same backward trajec-
tory modelling approach to identify the terrestrial-to-marine transfer of microplas-
tics in the west Pacific Ocean (Liu et al. 2019a, b, c, d). The same study reported that 
trajectory modelling indicates that suspended microplastic particles from that region 
could be transported to the Arctic through the movement of air masses. Microplastics 
have been observed in several remote regions that are typically considered ‘pristine’ 
due to the very low levels of anthropogenic influence in the vicinity (Allen et al. 
2019; Free et al. 2014; Zhang et al. 2016b, 2019). Medium- and long-range trans-
port of particles is considered to be a key mechanism delivering microplastic con-
tamination to these locations. Questions remain regarding the potential for 
long- range atmospheric transport of microplastic particles, atmospheric residence 
times, and transformation (e.g. degradation, fragmentation) of microplastic within 
the atmosphere.
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4.6  Microplastics: Where Do They End Up?

4.6.1  Export to the Marine Environment

Due to catchment dynamics, erosion, and transport processes, many of the micro-
plastic particles released on land are expected to eventually end up in the marine 
environment (Hale et al. 2020). Several seminal studies have estimated significant 
fluxes of plastic from land to the ocean (Jambeck et al. 2015; Lebreton et al. 2017; 
Schmidt et al. 2017); however, these deal with mass estimates, which predominately 
illustrate flows of macroplastic. Some studies have instead modelled microplastic 
release, demonstrating increases in microplastic export over the next several decades 
(Siegfried et al. 2017; van Wijnen et al. 2019). These studies highlight some geo-
graphical hotspots for release, such as South East Asia, and highlight wastewater 
treatment and TWP as important origins for microplastic that reaches the oceans. 
Improvements in sewage treatment were identified as a potential solution to signifi-
cantly reduce future marine export of microplastics from land-based sources.

As previously discussed, microplastic transport in freshwater systems may vary 
in regard to seasonal or episodic changes in hydrological conditions. This is likely 
to influence the flux of microplastic to the oceans. Flood events are important for the 
transport of suspended sediments; over 90% of the annual suspended sediment flux 
of a river may be associated with storm events (Walling et al. 1992). Hurley et al. 
(2018) reported an export of 0.85 tonnes of microplastic particles from bed sedi-
ments in a medium-sized catchment in the UK. This was associated with a high- 
magnitude flood event that scoured accumulated microplastics from riverbeds and 
transferred them downstream and potentially out to the ocean. This is supported by 
evidence for significant increases in coastal microplastic contamination in the vicin-
ity of river outlets following flood events (e.g. Gündoğdu et  al. 2018; Lee et  al. 
2013; Veerasingam et al. 2016).

This transfer from land to sea may not always be unidirectional. Rivers influ-
enced by tidal changes see a reversal in flow direction for some, or all, of the cross 
section during high-tide conditions, which may transport plastics upstream (van 
Emmerik et al. 2019). Moreover, coastal flooding may return marine microplastics 
to the land through deposition during the inundation of land. The impact of these 
factors should be considered when establishing robust flux estimations and assess-
ing the fate of microplastic particles.

4.6.2  Microplastic Sinks in Terrestrial 
and Freshwater Environments

In some cases, land-based sources of microplastic and the terrestrial and freshwater 
systems involved in their dispersal and transformation are perceived as vectors for 
marine microplastic contamination. In regard to hydrological and geological cycles, 
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across long timescales the majority of waters and sediments can be expected to 
reach the marine environment. Hence, microplastics are also likely to end up at this 
ultimate destination. Despite this, it is important not to overlook the need to better 
understand terrestrial and freshwater contamination dynamics, the risks posed to 
these ecosystems, and measures to limit or remediate contamination in these set-
tings. Microplastics in the environment may pass through several terrestrial and 
marine cycles related to continuous and complex movement between both biotic 
and abiotic environmental compartments (Bank and Hansson 2019). Without a thor-
ough understanding of the transfer of particles from the source to the ocean, efforts 
to reduce or remediate microplastic contamination will be hindered.

In addition, within terrestrial and freshwater systems, there are several candidate 
environments that may act as environmental sinks for microplastic particles, inter-
rupting their ultimate transport to the coast. These may represent temporary or per-
manent sinks across different temporal and spatial scales. For example, lake 
sediments, where microplastics may accumulate and become buried by sediment 
deposits, have been identified as sites of plastic preservation and storage (Corcoran 
et  al. 2015; Dong et  al. 2020; Turner et  al. 2019). At the bottom of a lake and 
beneath sediment layers, plastic particles are isolated from many of the degradative 
forces that initiate weathering, such as photodegradation (Corcoran et  al. 2015). 
Microplastic particles have been identified in sediment layers as deep as 75 cm and 
dated to have been deposited during the early twentieth century, at the onset of plas-
tic production (Turner et al. 2019). Once particles are buried to that depth, a signifi-
cant disturbance event is required to remobilise sediments  – such as dredging 
activities or a very high-magnitude storm. In the absence of such disturbance, lake 
sediments can be considered permanent or very long-term sinks for microplastic 
particles.

Other environments that may represent environmental sinks – but have not yet 
been studied regarding this specific question – include a range of sedimentary land-
scapes. These comprise settings that have been identified as environmental sinks for 
other contaminant types. For example, alluvial environments act as stores for many 
sediment-bound contaminants (e.g. Lecce and Pavlowsky 1997; Walling et al. 2003; 
Winter et al. 2001). Floodplain soils have already been shown to contain microplas-
tic particles (Scheurer and Bigalke 2018). Depending on the geomorphological con-
ditions of the environmental setting, floodplains may represent long-term stores of 
microplastic particles. Additionally, they may constitute future diffuse sources of 
microplastic particles as sediments with connectivity to freshwater systems may be 
reworked into active channels.

Environmental sinks can be defined by their temporal frame. From this perspec-
tive, not all sinks may be sedimentary. For example, residence times of waters in 
large lake systems, such as the Great Lakes, can reach close to 100 years (Mason 
et al. 2016a, b). If particles are also retained in these water masses, surface and sub- 
surface waters in lacustrine environments may represent a short- to medium-term 
sink for microplastic particles. This is particularly relevant for lakes that are not 
consistently connected with fluvial systems, such as floodplain lakes. Additionally, 
entrapment in low-energy zones in fluvial systems  – such as in dense riparian 
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vegetation – may constitute short-term storage of buoyant microplastics. The resi-
dence times associated with these stores for microplastics particles, as well as the 
thresholds required to transition these environments to ‘sources’, require further 
investigation.

4.7  Future Research Agendas

Microplastic contamination is globally pervasive across terrestrial and freshwater 
environments. This review has drawn together research on several important sources 
and release pathways for microplastics including roads, agriculture, and wastewater 
treatment. Many environmental settings are expected to receive significant micro-
plastic loadings, which likely represents a greater annual release than that estimate 
for the marine environment. Terrestrial and freshwater systems can be characterised 
by considerable complexity, whereby a range of dynamic processes are expected to 
influence the distribution, transport, and fate of microplastic particles.

Through this review, a set of specific directives for future research have been 
identified:

i. Harmonisation of Methods and Reporting, Including Improved Quality 
Assurance and Control (QA/QC) Practices, to Ensure Sufficient Data 
Quality and Permit Comparability Between Datasets

The review of studies of microplastic occurrence in terrestrial and freshwater envi-
ronments, including samples of water, sediment, and biota, is characterised by 
the wide range of methodological approaches undertaken. This includes discrep-
ancies between the sampling techniques, sample treatment, analytical technolo-
gies employed, and particle size classes analysed. In addition, many studies do 
not employ a similar set of QA/QC measures, so it is not possible to assess the 
quality of reported data. Findings are also often reported in different ways, for 
example, using different units or publishing only summary statistics that also 
differ (e.g. minimum/maximum, mean, median). The culmination of this vari-
ability is the lack of comparability between different studies. Harmonisation of 
analytical methods and reporting formats, and the publication of data in appro-
priate repositories, will help to reduce uncertainties in a holistic, global overview 
of the status of contamination, as well as providing meaningful baselines from 
which to track the impact of reduction or remediation measures.

ii. A Thorough Assessment of Microplastic Sources, Fate, and Impacts in 
Agricultural Environments

Agricultural environments represent the convergence of several sources and release 
pathways of microplastic particles. Particles may also be associated with higher 
chemical burdens from plastic additives (such as for decreasing photodegrada-
tion of mulching films) or sorbed contaminants (such as from WWTPs), although 
the extent and significance of this are relatively unknown. The status of contami-
nation of agricultural settings is relatively unknown, and the fate of particles in 
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agricultural soils remains under-researched, which makes it difficult to assess the 
relative contributions of different sources under relevant environmental condi-
tions or the accumulation of particles over time. A small body of research on the 
impacts of microplastic contamination in agricultural environments is just now 
emerging. More research is required to gain a holistic perspective on the risks 
posed by microplastics across spatial and temporal scales. This is particularly 
important given the potential for any identified negative effects to impact upon 
soil health and food security.

iii. Quantification of Road-Associated Microplastic Particles (RAMP) as a 
Source of Microplastic to the Environment

For road-associated microplastic particles (RAMP), there are major knowledge 
gaps concerning environmental loadings, transport from the road to different 
matrices, and retention in gully-pots and water treatment systems. More research 
is urgently needed on RAMP in order to accurately assess how much is released 
into the environment, including the relative contributions from different road- 
related sources (TWP, RAMPPMB, RAMPRM). This is important given the spot-
light that has now been placed on RAMP in several assessments of globally 
significant sources of microplastic to the environment. Quantification should be 
achieved through a new and optimised approach to analysing RAMP in environ-
mental samples.

iv. Measures and Technologies to Reduce Microplastic Emissions to Wastewater 
or to Separate Particles Within WWTP Systems

This review highlighted the role of wastewater systems, such as WWTPs and CSOs, 
as a release pathway for microplastic particles to both terrestrial and freshwater 
environments. A diverse range of sources input microplastic particles to waste-
water, and efforts should be made to reduce these at the source to reduce the 
burden on WWTPs and limit releases from untreated discharges such as CSOs. 
Much of the world’s wastewater is not connected to a WWTP and is instead 
released untreated. Improvements in the global capacity of wastewater treatment 
would limit the environmental release of microplastics in many countries. Land 
application of sewage sludge has been identified as a primary release pathway for 
many microplastic types (ECHA 2019). Technologies to capture and remove 
plastic particles in WWTPs may help to reduce the burden on global soil 
environments.

v. A Better Understanding of the Controls Underpinning the Retention and 
Transport of Microplastic Particles in Freshwater Systems, Including More 
Accurate Flux Estimates to the Marine Environment

Microplastic particles in freshwater systems are likely to follow a complex pathway 
from their release to their ultimate fate. This may include several processes that 
interrupt downstream transport. These dynamics require further investigation to 
establish thresholds and controls on microplastic transport in freshwater environ-
ments. The majority of particles are expected to eventually end up in the marine 
environment, via fluvial systems. Estimates for this flux need to draw upon 
process- based research to incorporate appropriate complexity and identify the 
relevant controls on microplastic release to the marine environment. Moreover, 
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further research on the dynamics of microplastic transport and spatial patterns of 
contamination will identify zones of microplastic accumulation in freshwater 
systems and can highlight the areas at greatest risk to potential negative impacts 
of contamination. This will help to focus efforts to protect freshwater ecosystems.

vi. Further Investigation of the Occurrence of Microplastics in Terrestrial and 
Freshwater Organisms, with a Specific Focus on Particle Types Such as RAMP

Many ecotoxicological studies are determining the effects associated with different 
microplastic particles and loadings, but evidence for uptake under field condi-
tions is still scarce. Exposure represents half of the equation to evaluate risk, and 
so a more detailed investigation of the uptake of particles in real environment 
conditions is essential to contextualise ecotoxicological studies and inform risk 
assessments.

vii. Assessment of the Spatial and Temporal Scales of Environment Sinks for 
Microplastic Particles

This review highlighted several candidate environments that may act as temporary, 
long-term, or even permanent sinks for microplastic particles in freshwater and 
terrestrial settings. Some initial studies have investigated particle accumulation 
and potential residence times for some of these, but further research is required 
to establish the spatial and temporal scales upon which these environments act as 
stores, including the potential for them to become future sources of microplastic 
contamination through reworking and remobilisation. This is necessary to gain a 
better long-term perspective of environmental contamination and build more 
appropriate and better-targeted approaches to remediation instead of short-term 
fixes (Table 4.4).

Table 4.4 References for Fig. 4.3

Location Study references

Lake Geneva, Switzerland Faure et al. (2012)
Laurentian Great Lakes Eriksen et al. (2013)
Lake Garda, Italy Imhof et al. (2013)
Lake Hovsgol, Mongolia Free et al. (2014)
Lake Ontario, Canada Corcoran et al. (2015)
Lake Bolsena and Chiusi, Italy Fischer et al. (2016)
Lake Michigan, USA Mason et al. (2016a, b)
Taihu Lake, China Su et al. (2016)
Tibet plateau lakes, China Zhang et al. (2016a, b)
Lake Winnipeg, Canada Anderson et al. (2017)
Paraná lakes, South America Blettler et al. (2017)
Vembanad Lake, India Sruthy and Ramasamy (2017)
Edgbaston Pool, UK Vaughan et al. (2017)
Wuhan lakes, China Wang et al. (2017)
Lake Erie, Canada Dean et al. (2018)
Lake Superior, USA Hendrickson et al. (2018)
Lake Garda, Italy Imhof et al. (2018)

(continued)
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