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Abstract. One of the importance of the contamination uncertainty
model is to consider in-determinism in the uncertainty. We consider this
advanced property and develop two methods. These methods identify if
there is imprecision in a given model or data. In the first approach, we
build two different—a probability distribution and an interval-—models
for a test function f via given data/model. Then, we identify the level of
imprecision by assessing, so-called model trust, € € (0, 1) in the contam-
ination model whether the weight is higher for the probabilistic/interval
model or not. In the second approach, we calculate the lowest and highest
previsions for the test function and identify the imprecision interval out
of them. We further discuss and show the idea via two simple production
and clutch design problems to illustrate our novel results.

Keywords: Imprecision * e-Contamination + Uncertainty + Indecision

1 Introduction

Dealing with uncertainty is one of the problems which is needed for the prob-
lems under uncertainty. The uncertainty is present because of lack of information
or data. One of the uncertainty models is probabilistic (data-driven or analyti-
cal) model. These models’ intentions are to represent e.g., agents’ beliefs (agent
like human, machines, or robots) about the domain/area they are operating
in, which describe and even determine the actions they will take or decide in
a diversity of situations or realisations [38]. Probability theory provides a nor-
mative system for reasoning and decision making in the face of uncertainty.
Bayesian or precise probability models have the property that they are purely
decisive i.e., a Bayesian agent always has an optimal choice when faced with
several alternatives, whatever his state of information is, see e.g., [19,38]. While
many may view this as an advantage, it is not always realistic. There are two
problems, Gilboa [17] offers historical surveys with (precise) probabilities as a
© The Author(s) 2021

P. F. Pelz and P. Groche (Eds.): ICUME 2021, LNME, pp. 157-172, 2021.
https://doi.org/10.1007/978-3-030-77256-7_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77256-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-77256-7_14

158 K. Shariatmadar et al.

model to describe uncertainty: (i) the interpretation is not clear or at least, the
consequences in the real world are not clear. Therefore, we want an operational
and behavioural model (ii) the model is unique and static while the real model
behaviour is dynamic. In any precise decision problem, there is always an opti-
mal solution. You can—beholding some degenerate cases—decide between two
actions. The idea whether there is a fair price or is not (either to accept/buy or
reject /sell a gamble) is not vital, the possibility of indecision is rather important
[19,38]. Imprecise probability (data-driven, grey/white box) models deal with
said issues by explicitly allowing for indecision while retaining the normative,
coherent stance of the Bayesian approach, see for more details, [5,19,38,42,44].

In this paper, our main goal is to answer a question about the existence
of the imprecision in a data or model i.e., how to know that there is impreci-
sion in the uncertainty made via the given data or model? In this section, we
describe the advanced uncertainty modelling in depth via some simple examples
to understand the concepts and especially the generic theory of lower and upper
previsions. In our recent works [36-40], we have focused on the novel approach
to make decisions under different types of imprecise uncertainties in linear opti-
misation problems (as one of the applications). We proposed two different solu-
tions under two decision criteria—Maximinity and Maximality i.e., the worst-
case solutions (the least risky solutions) and less conservative solutions (more
optimal solutions). With these approaches, we can always decide based on the
applications and preferences (from the final decision maker) to choose whether
the more optimal (more risky) solutions or less risky (less optimal) solutions!. In
the next Sect. 1.1. first, we give an overview of the state-of-the-art and history
about the uncertainty. Second, in Sect.2.1. we explain the uncertainty briefly
under Walley’s integration [42].

1.1 Literature Status and History

There is a long history about using imprecise probability models starting from
the middle of the 19" century [38]. For instance, in probabilistic logic: it was
already known to George Boole [4] that the result of probabilistic inferences
may be a set of probabilities (an imprecise probability model), rather than a
single probability. In 1920, Keynes [22] worked on an explicit interval estimate
method to probabilities. Work on imprecise probability models proceeded in the
20" century, by A. Kolmogorov [23] in 1933, B. Koopman [24] in 1940, C. A.
B. Smith [41] in 1961, 1. J. Good [18] in 1965, A. Dempster [13] in 1967, H.
Kyburg [21] in 1969, B. de Finetti [16] in 1975, G. Shafer [34] in 1976, P. M.
Williams [48] in 1978, I. Levi [26] in 1980, P. Walley [42] in 1991, T. Seidenfeld
[33], and G. de Cooman [5,44] in 1999. In 1990, P. Walley’s published the ref-
erence book: Statistical Reasoning with Imprecise Probabilities [42] representing
the theory of imprecise probability. He also interpreted the subjective probabili-
ties as accepting/buying and rejecting/selling prices in gambling. In 1990 some

! The risk is the distance between the worst-case solution and the less conservative
solutions e.g., in the linear optimisation problem, the risk is the distance between
the objective function at maximin point and the maximal solutions.
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important works published by Kuznetsov [25] and Weichselberger [45,46] about
the interval probabilities. Also Weichselberger generalizes the Kolmogorov’s work
[23] in 1933. In 2000, R. Fabrizio [30] presented the robust statistics. In 2004,
T. Augustin [1] provided non-parametric statistics. In 2008, the important con-
cept about Choquet integration is proposed by G. de Cooman [9]. This work
together with the work of P. Huber [20] about two-monotone and totally mono-
tone capacities have been the foundation of artificial intelligence. Moreover, in
2008, G. de Cooman and F. Hermans [8] proposed imprecise game theory (as the
extension of the work of Safer and Vovk [35]). Dealing with missing or incomplete
data, leading to so-called partial identification of probabilities, is proposed by G.
de Cooman and C. F. Manski [10,27]. Another application in network domain
so-called credal nets were proposed by F. Cozman [6,7] which are essentially
Bayesian nets with imprecise conditional probabilities.

The paper is organised as follows. In the next Sect.2 we explain the theory
of imprecise probability and show the differences between precise and impre-
cise uncertainties via several simple examples. An advanced—e-contamination—
model as well as two novel methods to identify imprecision are discussed in
Sect. 3. In Sect.4 we propose a numerical production problem to illustrate the
results. We conclude and discuss the future works in Sect. 5.

2 Uncertainty

Generally, uncertainty is the consequence of lack of data, information, or knowl-
edge. Conventional methods of introducing uncertainty into a problem, ignore
the following cases: (a) imprecision, (b) mixed or combined precise and imprecise
models, or (¢) choosing best imprecise models for the available amount of data.
In this paper, we consider (a) and (b) to propose two methods to identify if
there is imprecision in a given uncertainty model or not. In this section, we first
explain the difference between precise and imprecise uncertainty. To understand
this better, we illustrate these concepts via several simple examples. Second, we
use define a prevision operator to measure the uncertainty. We interpret lower
and upper prevision operators to quantify the imprecise uncertainty. Finally, we
define an advanced mixed/combined model to identify imprecision in a given
uncertainty model (analytical or data-driven model) in two ways.

2.1 Interpretation of Lower and Upper Previsions

Most of the above mentioned works on imprecise probability theory was intro-
duced by Walley [42]. In this paper, we follow the terminology and school of
thought of Walley [42,43] who follows the tradition of Frank Ramsey [29], Bruno
de Finetti [12] and Peter Williams [50] in trying to establish a rational model
for a subject’s beliefs and reasoning. In the subjective interpretation of Walley,
the upper and lower previsions/expectations for gamblers are seen as prices. A
gambler’s highest desirable buying price and the lowest desirable selling price,
respectively. In gambling, which is about exchanging of gambles, assume that a
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gambler (decision maker) wants to make a profit whether (s)he wants/accepts to
buy or sell a gamble. By knowing the highest desirable price to buy the gamble
and the lowest desirable price to sell the gamble, (s)he can make any desirable
decision to not to lose money.

Generally, a decision maker’s lower prevision/expectation P(-) is the highest
acceptable price a to buy a gamble/utility function f. In other words, P(f) is
supremum price to buy the gamble f. Mathematically P(f) is defined as:

P(f) = sup fact f — a2 0}, (1)

and the upper prevision/expectati(zl P(-) is the lowest acceptable price 3 to
sell the gamble f. In other words, P(f) is infimum price to sell the gamble f.
Mathematically P(f) is defined as:

P(f) = int (3: 8- £ > 0}. (2)

In classical probability theory, the upper and lower previsions are coincided:
P(f) = P(f) :== P(f). Then P(f) is interpreted as the gambler’s fair price for
the gamble f. The price that the decision-maker accepts to but f for any lower
price and sell it for any higher price than P(f). The gap between P(f) and P(f)
is called imprecision or indecision. This is the main difference between precise
and imprecise probability theories—as shown in Fig. 1, imprecise models allow
for indecision/imprecision. Such gaps arise naturally e.g., in betting markets
which happen to be financially illiquid due to asymmetric information, for more
information see [21,26]. As an interpretation, for instance in gambling (which
is about exchanging of a gamble f), P(f) is the lowest desirable price to sell
the gamble f. In other words, if a gambler knows the lowest acceptable price
of a gamble then (s)he can accept any higher price than P(f). To explain the
importance and deeper view about the in-deterministic uncertainty, in the next
Sect. 2.2., different types of uncertainty, as well as some simple examples, will
be talked to clarify the distinction between precise and imprecise uncertainty. In
Sect. 3 a general overview about modelling uncertainty via one of the advanced
models called e-contamination as well as two methods (imprecision identification
methods) will be discussed. Next, a simple example will be given to illustrate
the results in Sect. 4. Conclusions and further discussions will be in Sect. 5.

We buy f We sell f

l| |l

" 4 v

P(f) T P()

Undecided

Fig. 1. Highest buying and lowest selling prices for a gamble f
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2.2 Classification of Uncertainty

There are four levels of certainty (or uncertainty) about knowledge or data. In
Fig. 2, four levels of these certainties or uncertainty are illustrated from known
knowns (knowledge) towards unknown unknowns (imprecise uncertainty). Our
main focus here is on the Unknown unknowns where the unknown data is not
precise. In other words, the probability of an event or a phenomenon is vague.
In real-life problems, the nature of the uncertainties are usually imprecise uncer-
tainties and one of the sources of the imprecisions, in which we have researched
about, is human, also weather, traffic, and so on, [39]. One of the interesting
purposes in almost all of those real-life problems is to find the best choice under
some conditions dealing with the uncertainties. In other words, one of the major
problems is to make the best (optimal) decision based on the restrictions (uncer-
tainty, constraints, and so on) within some criteria. Mathematically, the idea can
be formulated as optimising a goal function under an uncertain domain given by
constraints. But the important point is how to deal with the uncertainty? Even
more importantly, how to know that the uncertainty is not deterministic? To
understand deeper the idea of the existence of indeterminism in the uncertainty,
let’s point out three real-life examples.

Known
knowns

Known
unknowns

(Knowledge)
Precise data

(Risks)

Unknown
unknowns

(Imprecise
Uncertainty/
Data)

Fig. 2. Precision vs. imprecision

2.3 Probability Under Different Conditions—Travelling to Work

Assume the problem of driving a car each day from home to work and back
over a (long) distance. Consider there are two possible routes. Typically, one
would measure the duration of travel for both routes over some period, let’s
say a year and compute probability or cumulative distribution function (CDF)
from the data. The goal is—using the computed CDF results in some tool-to
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decide, based on the probability, which route is beneficial. As we have seen from
a real database [36] sent by a factory here in Belgium?, the CDF functions
differ and are not unique. Consequently, a single CDF function cannot capture
the true distribution because of the indeterministic parameters influencing this
duration, e.g., weather conditions, human (driver) mood, or traffic status that
might change during travel which one path might be highly influential by these
weather, driver, or traffic conditions in contrast to the other path. The variation
on the CDF of one path might be much higher than for the other which is not
possible to model via one single CDF. It is, therefore, better to capture this
uncertainty by use of an advanced model (considering the indeterminism).

One of the best models to describe the imprecise uncertainty for this prob-
lem is sets of distributions functions which is called probability box (p-box) [15].
This model is developed and discussed briefly under an optimisation problem
in [37], which is the most informative model. Another alternative is to use the
contamination model, which is simpler and doesn’t require lots of data, we will
discuss it in the next section. In this case, every CDFs is collected in a set which
is bounded from below and above, called upper and lower bounds, where can
model variations in the probabilities (imprecision). The variation on the prob-
ability of the duration for both routes is illustrated in Fig.3 where the full and
dashed lines represent the probability under different conditions. In the case of
the driving example, subset division can be made based on whether or traffic
conditions (obtained from a weather or traffic database), as well.

route 1 route 2

probability

duration

Fig. 3. Probability density of the duration for both routes 1 and 2

This, in turn, allows for more robust decision making in the future (which
path to take) based on the imprecision in the data, captured by the advanced
models®. Again, the main question is how to measure this imprecision and find
out there is imprecision in the data (or model), generically?

2 Because of the confidentiality about the agreement, we can not make the names and
details of the database public unless under an official confidentiality agreement.

3 Generally, p-box uncertainty model, described above, belong to coherent upper and
lower previsions family, see e.g., for details and terminology [28,42].
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2.4 Probability Under Different Conditions—Diagnosis and
Treatment

Logical decision making is a major part of all sciences, engineering and decision-
based professions, where scientists, engineers or specialists apply their knowl-
edge or beliefs in a given area to make optimal decisions. However, the decision
under uncertainty is one of more advance topics compared to the determinis-
tic decisions. Even more challenging where the uncertainty is not precise. For
example, in the medical science area, decision making often involves a diag-
nosis and the selection (decision) of appropriate (optimal) treatment under a
vague data—meaning, the data is not large enough or incomplete because of
several restrictions such as expensive tests, test-case limitation, missing data, or
unknown unmeasurable parameters, to gather enough data—where we call life
involved (high-risk) problems. The nature of uncertainty is not unique. In other
words, for instance, the uncertainty is not the same from one patient to another.
In these kinds of areas, when the uncertainty is imprecise, we do not have a
single (optimal) decision to make, however, it is very important to know at least

the extreme cases e.g., the worst/best cases®.

2.5 Probability Under Different Conditions—Clutch Design

Another example, in the mechanical engineering area, is decision making (usu-
ally) about a design of a component under some conditions such as selections
of right parameters for a design—for instance, a clutch design—e.g., diameters,
friction disks, friction coefficient (uncertain parameter), torque capacity, speed,
gear parameters, cooling system parameters (uncertain parameter), and so on.
To design a safe clutch pack, in one hand, the engineer needs to make a safe
decision i.e., tries to find the worst-case solution to avoid the risks, on the other
hand, concerning the total cost of ownership, he/she needs to decide to have
minimum cost i.e., less conservative solutions. In both examples, the nature of
uncertainty is not unique. In other words, for instance, the uncertainty is not the
same from one clutch to another e.g., the friction coefficient is not known and
is changing in different temperature ranges (coming from energy loss by friction
or oil condition) and different geometry see Fig. 4.

Piston ~_|

Friction plates
Chamber —

—7———— Return spring
Drum

To valve

Output shaft

Fig. 4. Wet-plate clutch of an automatic transmission

4 Tt is also interesting to know what are possible less conservative cases/decisions.
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Modelling those unknowns is not possible via classical uncertainty because
of the imprecision like the uncertainties. Knowing in advance, the presence of
the imprecision might help to choose the right uncertainty model and have more
robust and stable (optimal) decisions. Then the important question is that is
there an imprecision in a problem or data? How to find out that there are
random fluctuations in a problem/data? We discuss this in detail in the next
section.

3 e—Contamination Model

To a Bayesian® analyst, the distinction between fixed, random, and mixed mod-
els boils down to a specification of the number of stages in a given hierarchical
model. One of these mixed models is called e-contamination model. This model
is more advanced than the interval model [40] i.e., it links the precise model
to the imprecise model. This model is recommended to be used to also analyse
if there is imprecision in a given uncertainty model or not®. Furthermore, the
e-contamination model is easier to build as well as implement compared to the
p-box (or other imprecise models e.g., possibility distribution model [40]). In lit-
erature [2], several classes of prior distribution have been proposed but the most
commonly used one is the contamination class e.g., works of Good [18], Huber
[20], Dempster [14], Rubin [31], and Berger [3] to mention a few. In particular,
it is concerned with what they call the posterior robustness’. The idea is to
acknowledge the prior uncertainty by specifying a class/set M of possible prior
distributions and then investigating the robustness of the posterior distribution
as the prior varies over M. It had been mentioned by Berger [3] and Huber [20], to
work with the contamination class of priors when investigating posterior robust-
ness. They proposed the contamination class of combining elicited prior—termed
the base prior—with a contamination class of arbitrary priors. These approaches
are popular with Bayesian sensitivity analysis—first, to elicit an additive prob-
ability measure P, and then consider possible inaccuracies in the assessment® of
P, [42]. Those contamination models, achieve statistical efficiency and robustness
simultaneously, however, not much attention has been paid to this framework
in non-deterministic advanced uncertainty cases (pure non-probabilistic such as
intervals or high-dimensional cases like e-contamination or probability box). In
the next section, we explain the e-contamination model for a given probability
measure F and an imprecise interval model E.

3.1 Definition

e-contamination model P(-) is described as a convex combination of two uncer-
tainty models: (i) linear prevision model—Probabilistic model, e.g., Normal

5 In this paper, without any intention, we call a researcher who works on the deter-
ministic uncertainty framework, a Bayesian analyst.

6 We can decide if a pure precise model could be suitable or not.

" Which was different from the robustness defined by White [47].

8 The second step is called constructing a neighbourhood set of P.
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distributed model F, and (ii) lower prevision (imprecise) model e.g., interval
vacuous model E, which is described as follows:

P(f) = (1= )E(f) + €E(f) 3)

where E is the set of dominating linear previsions by E ie., E € M{E} =
{E:VfeL(),E(f)>E(f)}, for a given interval [a,b] C R, the E(f) :=
minyeq.p) f(y), and 0 < € < 1 is called (here) level of model-trust/importance®.
One question is, how to build or get the e-contamination model? Let’s consider a
simple example. We need to build two models (out of given data or model), one
probabilistic and one imprecise model. Assume, there is a %60 chance (precise
model) of having heavy traffic in a road A around time ¢, where ¢ varies between
1:00 and 2:00 o’clock, i.e., t € [1,2] hours (imprecise model). We are not sure
about the time ¢: sometimes ¢ = 13 : 00 and sometimes ¢ = 14 : 00. Suppose we
have an equal belief to the precise and the imprecise models, i.e., € = 0.5. There-
fore, the uncertainty model for a given test-function f in this problem becomes
the average of both models,

P(f) = 0.5E(f) + 0.5E(f) = 0.5(E(f) + E(f))-

3.2 Rationale

One of the important properties for this model is that this model considers
both probabilistic (a probability measure E) and non-probabilistic (an interval
[a,b]) models where we can tune it by choosing the right trust value (e). This
needs some expert knowledge or historical information about selecting the right
level. However, since the problem is convex, we can always generate all possible
outcomes for all € € (0,1), mathematically'?. In many real-life problems e.g.,
said traffic problem, we have both, a variation, and a guess or chance in the
real-life problems. The variation can be found via a robustness test or exper-
iment. By the time, with enough information, via e.g., sensitivity analysis, or
reliability tests/experiments we can also obtain the percentage of beliefs about
the unknown parameter, event, realisation, or phenomenon. Mathematically, to
find an interval model we need the lower and upper values of the realisation
which is varying between them i.e., the two boundary values are enough to build
the interval. For the probabilistic model, normally, we need more data to get
those percentages and guesses. But to consider both models, current classical
(precise) uncertainty models are not able to handle and deal with both models,
simultaneously. We believe that to start moving towards advanced uncertainty
(after interval case) the e-contamination model is one of the best models to use
in many real problems and applications [40].

9 ¢ is also called tuning parameter or weight factor.

10 For instance, we can easily calculate the outcome of the convex combination of two
points which is a line between the two points.
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3.3 Imprecision Identification—Method I

Another importance of the e-contamination model is to distinguish between
imprecision and precision i.e., the question is how to identify the imprecision
in a given problem or data? How to find out that there are random fluctuations
in a problem/data? The answer is given via this e-contamination model as fol-
lows. From a given model or available data (database), we first assume a known
outcome P(f) for a given real-valued test function f'!. Then we build a prob-
ability distribution as well as the variation interval for the test function f via
given data. By calculation the expected values for f in both cases—Probability
and Interval-we know E(f) and E(f). Finally, we solve the Eq. (3) to find the
e. If 0 <€ < 0.5 then there is less chance (less than %50) of having imprecision
in the data or the model otherwise, there is imprecision with the probability of
higher than %50.

3.4 Imprecision Identification—-Method II

Assume an interval [a,b] € R and a probability distribution are given via a data
(a database) or model. Another method to identify whether there is imprecision
in the given data (via a database) or model'?, is to calculate the lower as well
as the upper previsions for a chosen test function f as follows via (3):

)

the lower prevision P(f)is : (1 —€)E(f) + e E(f),and (4)
the upper prevision P(f) is : (1 —€)E(f) + eE(f) (5)

where €,€ € (0,1), the upper prevision in the given interval [a,b] is E(f) :=
maxyeiqp) f(y). If Ie* = max{e € £,€ € £} where ¢ satisfies in (4),

e€&:={g ¢ €(0,1)} and € satisfies in (5)

ec&:=1{6:6¢<(0,1)}

such that P(f) < P(f) then there is imprecision in the uncertainty model with
probability of €*, and the imprecision interval is [P(f), P(f)].

4 Numerical Example

4.1 Chocolate Production Problem

Consider a chocolate manufacturer which produces two types of chocolate 2l and
8. Both chocolates require Milk and Cacao only (for simplicity). Each unit of

' This can be done by an expert or historical data, to have the simplest case that we
know the outcome of the realisation which is given via both uncertainty models.

12 These models as discussed, could be estimated from the existing data or the available
model under uncertainty. These estimations are not the aim of this paper but for
instance the interval can be estimated via a sensitivity analysis and the probability
distribution can be calculated via a normal distribution fitted to the data/model.
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2 requires 1 unit of Milk and Y7 units of Cacao. Each unit of 8 requires 1 unit
of Milk and Y5 units of Cacao. The company capacity has a total of 12 units of
Cacao (no limit for milk). On each sale, the company makes profit of €1 per unit
2 and €1 per unit B. The goal is to maximise profit (how many units of 2 and
B should be produced respectively). Mathematically, the problem is modelled
as a linear programming problem:

max T+ o

ot {lel + Yory <12 (6)
T1,T2 Z 0

Assume that there are two sources of uncertainties: (i) a priory probabilistic infor-
mation (about dealing with experiments that numerically describes the number of
desired outcomes)—obtained by a historical data, expert knowledge, or sensitivity
analysis—and (ii) a set of realisations obtained via e.g., reliability analysis (about
robustness/variation). Suppose (i) the probabilistic models are given with distri-
bution functions Ny := N(u; = 7.5,01 = 1) and Ny := N(uz = 9.5,00 = 1)
about how likelihood we need the amount of cacao for both chocolates 2 and ‘B
in one year and (ii) also we know that the amounts of cacao for both chocolates
A € [7,8] and B € [9, 10] are varying. In other words, the problem is to maximise
profit under the e-contamination uncertain constraint for Cacao, which has like-
lihood amounts given by the normal probability distributions and varying in the
assumed lower and upper values, shown in Table 1.

Table 1. Uncertain Chocolate production problem—e-contamination uncertainty

Milk Cacao Profit per unit
A=z |1 N(7.5,1), [7,8] |1
B:=x2 |1 N(9.5,1), [9,10] | 1
Capacity | No limit | 12

Since, in this problem we do not have the lower and upper expected values
then we use method II to identify if there is imprecision in this example or not.
The lower and upper previsions are defined as follows,

(1 =€) ((z1 4 22)|7.501+9.500<12) + €((21 + 22) |82, +1020<12), and (7)
(1 =) ((=1 + 22)|7.50, 19,505 <12) + €((T1 + 22) |72, yorr<12) (8)

For instance, to maximise the profit (z1+2), from (7) we have: (1—¢€)2 +€3 and
from (8) we have: (1 —€)3 4+ €42, where for all €, € € (0,1) the profit for upper
prevision (8) is higher than (7) and the ¢* = max(0,1) ~ 0.9999, meaning with
the high probability 99.99 percent there is imprecision in the given model (6).
There are many conditions such as traffic, weather, or human behaviour/mood
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could affect e.g., transportations delays and consequently the exact amount of
stock (Milk) or the exact availability of warehouse capacity. Furthermore, this
inexact amount of stock or warehouse capacity is dynamically changing from
day-to-day. Therefore, using only probabilistic (truncated) distributions for this
problem will result in the suboptimal solution and the e-contamination model is
the suitable model for (6).

4.2 Clutch Design Problem

Back to the Clutch Design example discussed in Sect. 2.5, one of the main ideas
is to have a maximum torque transfer from one side of the clutch to the other
side. We simplify the problem as follows. Assume we want to design the clutch
to have a maximum friction torque 7¢ defined as:

Tf = ‘LLRNAPkAw (9)

where R, A, N are the radius, area, and the number of friction disks, respectively.
P, is the internal oil clutch pressure (pushing the friction plates towards each
other to close by increasing the pressure and open by decreasing it), Aw is the
slip speed, and g is the uncertain friction coefficient. If the spring force fs is
higher than the friction force Py A, then the clutch is open otherwise it is closed.
This is controlled via the pressure Py to create a smooth closing (opening) with
less torque loss. As defined in (9), this pressure depends on the friction coefficient
w. Currently, the friction coefficient is estimating, and it is a fixed value however
there are many disturbances e.g., oil temperature, the air in the oil, centrifugal
force, oil leakage, and so on, changing the friction coefficient. We use the data
provided by the work of Schneider [32]. In the given test data (durability tests),
we have seen that y is varying between 0.09 and 0.18 (interval model). Also
a normal distribution function for p can be estimated as N(u = 0.11,0 = 1).
We calculate the lower and upper prevision for the following linear optimisation
problem for a closing clutch.

max pRNAP,Aw max t
Iz N t
such that f; < P A such that fs; < PiA,
w, RN, A Py, Aw >0 puRNAP,Aw >t (10)

The lower and upper previsions are defined as follows:

(1 - 6)t|0.11RNAPkAw2t +e t\o,lsRNAPkszt

(1- §)t|o.11RNAPkszt te t\o.o9RNAPkAw2z

Assume, R =0.1m,N =2, A = 0.001132m?, P, = 5bar, Aw = 7.5m/s, then

(1 - E)t|93.392t te t\152.s22t (11)
(1 - E)t|93,392t te t\76.412t (12)
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For instance, to maximise the objective ¢, from (11) we have: (1—€)93.39+€152.82
and from (12) we have: (1 —¢€)93.39 +€76.41, where for all €, € € (0,1) the profit
for upper prevision (11) is higher than (12) and the ¢ = max(0,1) ~ 0.9999,
meaning with the high probability 99.99 percent there is imprecision in the given
model (10). So, we need to consider an imprecise model for the friction coefficient
w rather that a fixed estimated value.

5 Conclusion

In this paper we consider two methods to identify if there is imprecision in a
given problem under uncertainty with some degrees. The problem either is given
via a database (black-box) or analytically (white-box) where there is uncertainty
in either case, e.g., an unknown parameter where we know about distribution or
variation in the parameter (in the model or the measured data). We use one of
the advanced uncertainty—e-contamination—models to identify the imprecision
in the given data or model under uncertainty via two methods. If the lowest
and the highest expected values on the problem are given (e.g., by a decision-
maker) then we use method (I) proposed in Sect.3.3 to search for e € (0,1).
Otherwise, if the expected values are not available, then we proposed method
(II) discussed in Sect. 3.4 to search for the €* ¢ (. In both methods, the chance
(degree) of having the imprecision is determined by the e. That is up to the final
decision maker to decide whether using the imprecise uncertainty model is more
optimal when the chance is low e.g., lower than %50, or not. The approach here
to analyse and identify the existence of imprecision is a fundamental decision
before modelling the uncertainty. By knowing that, we can decide to choose
the best uncertainty model for the problem under uncertainty. This will avoid
having further issues such as instability, inaccuracy, or wrong results from the
model with wrong uncertainty model, and will help to have a more stable and
accurate model for any decision (or design) problem. In both methods I and 1T,
the problem is linear and convex i.e., the proposed methods are not NP-hard.
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