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Abstract  Monte Carlo (MC) simulation using Crystal Ball® (CB) software is 
applied to life cycle inventory (LCI) modelling under uncertainty. Input data for all 
cases comes from the ENVIREE (ENVIronmentally friendly and efficient methods 
for extraction of Rare Earth Elements), i.e. from secondary sources eco-innovative 
project within the second ERA-NET ERA-MIN Joint Call Sustainable Supply of 
Raw Materials in Europe 2014. Case studies described the flotation tailings from the 
New Kankberg (Sweden) old gold mine and Covas (Portugal) old tungsten mine 
sent to re-processing/beneficiation for rare earth element (REE) recovery. In this 
study, we conduct the MC analysis using the CB software, which is associated with 
Microsoft® Excel spreadsheet model, used in order to assess uncertainty concern-
ing cerium (Ce), lanthanum (La), neodymium (Nd) and tungsten (W) taken from 
Covas flotation tailings, as well as Ce, La and Nd taken from New Kankberg flota-
tion tailings, respectively. For the current study, lognormal distribution has been 
assigned to La, Ce, Nd and W. In the case of Covas, the weights of each selected Ce, 
La, Nd and W are 32 ppm, 16 ppm, 15 ppm and 1900 ppm, respectively, whereas in 
the case of New Kankberg, the weights of each selected Ce, La and Nd are 170 ppm, 
90 ppm and 70 ppm, respectively. For the presented case, lognormal distribution has 
been assigned to Ce, La, Nd and W. The results obtained from the CB, after 10,000 
runs, are presented in the form of frequency charts and summary statistics. Thanks 
to uncertainty analysis, a final result is obtained in the form of value range. The 
results of this study based on the real data, and obtained using MC simulation, are 
more reliable than those obtained from the deterministic approach, and they have 
the advantage that no normality is presumed.
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1  �Introduction

This paper presents the utility of uncertainty analysis based on the MC simulation 
applied to LCI modelling based on research data obtained from 2015 to 2017 as part 
of the ENVIREE EU-funded from the ERA-MIN programme within the second 
Joint Call aims at complete recovery process proposal of REEs (rare earth elements) 
from tailings and mining waste [1, 2].

The REEs are a group of 17 elements with similar chemical properties, including 
15 in the lanthanide group, yttrium (Y) and scandium (Sc) due to their similar physi-
cal and chemical properties [1, 3]. The lanthanide elements traditionally have been 
divided into two groups: the light rare earth elements (LREEs), lanthanum (La) 
through europium (Eu) (Z  =  57 through 63), and the heavy rare earth elements 
(HREEs), gadolinium (Gd) through lutetium (Lu) (Z = 64 through 71) [4]. Although 
Y is the lightest REE, it is usually grouped with the HREEs to which it is chemically 
and physically similar [4]. On the other hand, according to [5], REEs can be divided 
into three groups: LREEs, HREEs and scandium (Sc). LREEs comprise lanthanum 
(La), cerium (Ce), praseodymium (Pr), neodymium (Nd) and samarium (Sm), and 
the remaining are included in the HREEs. While Koltun and Tharumarajah [6] pre-
sented three groups of the REEs classification often used in extraction given in 
LREEs, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) and 
promethium (Pm); medium rare earth elements (MREEs), samarium (Sm), euro-
pium (Eu) and gadolinium (Gd); and HREEs, terbium (Tb), dysprosium (Dy), hol-
mium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium 
(Sc) and yttrium (Y) quoted in Australian Industry Commission documents [7]. By 
the way, definition of REEs found in the same Australian Industry Commission 
documents [7] is the following: “Group of 17 chemical elements – not rare at all; 
yttrium, for example is thought to be more abundant than lead. These elements were 
mislabelled because they were first found in truly rare minerals”.

2  �Uncertainty Analysis of LCI

The most popular approach for doing an uncertainty analysis in LCA is the MC 
approach [8], partly because it has been implemented in many of the major software 
programs for LCA, typically as the only way for carrying out uncertainty analysis 
(for instance, in SimaPro, GaBi and Brightway2 and in open LCA).

The MC technique is widely used and recommended for the inclusion of uncer-
tainties for LCA. Typically, 1000 or 10,000 runs are done, but a clear argument for 
that number is not available, and with the growing size of LCA databases, an exces-
sively high number of runs may be time-consuming [9, 10]. It is an important 
parameter in simulation modelling. [11] studied stochastic flow shop scheduling 
metaheuristic model for vessel transits in Panama Canal. It was found that using 200 
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replications is optimal, because the change in the 95% confidence interval width for 
makespan was negligible.

According to Good [12], the uncertainty exists when the probability of an event 
occurring is not 0 or 1. Not only statistic but also uncertainty is a fundamental ele-
ment in simulation analysis and modelling. Definition of uncertainty given by 
Huijbregts [13] is the following: “Uncertainty is defined as incomplete or imprecise 
knowledge, which can arise from uncertainty in the data regarding the system, the 
choice of models used to calculate emissions and the choice of scenarios with which 
to define system boundaries, respectively”, and uncertainty defined by Walker et al. 
[14] is as “any deviation from the unachievable ideal of completely deterministic 
knowledge of the relevant system”. Uncertainty is to be found when a decision-
maker cannot mention all possible outcomes and/or cannot attribute probabilities to 
the various outcomes [15]. According to [16], uncertainty analysis is another impor-
tant issue in LCA, as average data is usually used without considering the associated 
variability, and the results can be misleading when comparing systems [16]. 
Deterministic approaches and the description of processes in the studies of ecologi-
cal life cycle assessment do not properly reflect the reality [17]. The analysis of 
uncertainty, a pervasive topic in LCA studies [18, 19], has been a subject for more 
than 10 years. Many LCA software tools (e.g. SimaPro, GaBi) facilitate uncertainty 
propagation by means of sampling methods, and most often used MC simulation 
[16, 20–22]. Detailed description of the combination of sources of uncertainty 
(parameter, model and scenario uncertainties) and combination of source of uncer-
tainty and methods to address them (deterministic, probabilistic and simple meth-
ods) are discussed in [23].

MC simulation has received considerable attention in the literature, especially 
when MC simulations are used for making decisions that will have a large social 
and economic impact [24]. As a result, it was the most commonly recommended 
tool (e.g [25, 26]). Stochastic nature of the MC simulation is based on random num-
bers, and simulation models are generally easier to understand than many analytical 
approaches [18]. According to La Grega et al. [27], MC simulation can be consid-
ered the most effective quantification method for uncertainties and variability 
among the environmental system analysis tools available.

3  �LCI Data Quality and Collection

Based on the different physical and chemical separations carried out on New 
Kankberg and Covas tailings [28], the following process treatment scheme is shown 
in Figs. 1 and 2, respectively.

The possibilities of extraction of Ne, Ce and La using magnetic separation can be 
reached, thanks to the paramagnetic property of monazite. Inventory data used in 
the study has been obtained from the following sources: the primary data used in 
this study is based on the elements determined from the chemical analyses done by 
instrumental neutron activation analyses site-specific measured or calculated data, 

Role of Stochastic Approach Applied to Life Cycle Inventory (LCI) of Rare Earth…



110

Fig. 1  Proposed process scheme for the beneficiation of Covas tailings. (Adopted from [28])

Fig. 2  Proposed process scheme for the beneficiation of REE in the flotation tailings from New 
Kankberg mine. (Adopted from [28])
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and on values found in literature. In the current study, we discuss and model our LCI 
adopting the proposed process for the beneficiation of REE in the flotation tailings 
from New Kankberg mine in Sweden and Covas tailings [29].

4  �Simulation Model: Model Assumptions

Simulation models are generally easier, when it comes to their interpretation and 
understanding, than a number of analytical solutions. Moreover, simulation models 
provide an interesting opportunity to give more reliable and comprehensive data 
[30]. For input parameters analysed in this study (La, Ce, Ne and W), uncertainty 
was included in the MC analysis by assigning distributions.

For uncertainty analysis in the LCI study, the lognormal probability distributions 
have been assigned to each analysed REE. Lognormal distribution is stable and no 
negative values are possible [21]. In this context, it should be pointed out that the 
lognormal probability distribution with the GSD equal to 1.13 was applied to rare 
earth oxides in the ecoinvent background process “Rare earth oxide production 
from bastnaesite” taken from the “Life Cycle Inventories of Chemicals Data v2.0 
Ecoinvent report No. 8” [31].

The decision to choose lognormal distribution is based on the works of [20, 21, 
32] and the bibliographies included in the above-mentioned publication because the 
quality of data was not sufficient to estimate best-fitting distributions.

Several examples of performance of MC simulation by using CB software can be 
found in [33] as well as in [20, 21, 34]. The MC simulation results for La, Ce, Ne 
and W are shown in graphical forms (histograms) and descriptive statistics (percen-
tiles summary and statistics summary).

It is important that a sufficient number of replications (runs) should be used in a 
simulation [35], because the quality of the simulation results depends on the number 
of replications. In general, the higher the number of replications, the more accurate 
will be the characterization of the output distribution and estimates of its parame-
ters, such as the mean [34].

5  �Results and Discussion

Random values from the probability distribution of each parameter were selected in 
each run and a forecast distribution for each selected REE. CB’s distribution fitting 
function can analyse a data set and determine not only the best fit but also the qual-
ity of the fit [34]. During a single trial, CB randomly selects a value from the defined 
possibilities (the range and shape of the distribution) for each uncertain variable and 
then recalculates the spreadsheet [36].
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5.1  �Covas (Portugal) Old Tungsten Mine Case Study

After activating the simulation with the randomization cycle, set previously to 
10,000 trials, the results obtained by MC simulation after 10,000 trials, for the Ce, 
La and Ne, have been presented in the form of frequency charts (histograms). They 
are shown in Figs. 3, 4, 5 and 6, respectively; statistics, as well as percentiles, reports 
are presented in Tables 1 and 2, respectively. The mean values of Ce, La, Ne and W 
forecast values amounted to the GSD with a 95% confidence interval around the 
mean values were situated between:

•	 Ce [26.17 and 38.61] ppm (see Fig. 3)
•	 La [13.13 and 19.46] ppm (see Fig. 4)
•	 Nd [12.24 and 18.06] ppm (see Fig. 5)
•	 W [1556.96 and 2302.73] ppm (see Fig. 6)

The histograms of the outcome variables include all values within 2.6 standard 
deviations from the mean, which represents approximately 99% of the data, and the 
number of data points inside 2.6 standard deviations of the mean is shown in the 
upper right corner of the frequency charts, as presented in Figs. 3, 4, 5 and 6 (see 
[20, 34] for more details). It is worth noting that if the number of runs increases, the 
mean standard error decreases [34]. Moreover, the mean standard error can be used 
to construct confidence intervals as described in Evans and Olson [34].

The confidence interval range expressing 95% presented in the frequency chart 
(see Figs. 3, 4, 5 and 6) is highlighted with a darker colour marker. In other words, 
this means that 95% of the results are lying inside this range. Moreover, by setting 
the certainty values (e.g. 95%), the confidence intervals (minimum and maximum 
bounds) are set automatically by the grabbers, and the corresponding numerical 
values are entered in the edit fields at the bottom part of the dialog boxes of the 
Forecast tab (e.g [20, 34].).
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Fig. 3  CB forecast chart: Ce after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 26.17 to 38.61 ppm. (Source: own work)
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5.2  �New Kankberg (Sweden) Old Gold Mine Case Study

The results obtained by MC simulation, after 10,000 runs, for Ce, Ne and La, are 
shown in Figs. 7, 8 and 9, respectively, as well as in statistics and percentiles reports 
presented in Tables 3 and 4, respectively. The mean values of Ce, Nd and La with a 
95% confidence interval around the mean values were situated between:

•	 Ce [138.93 and 207.00] ppm (see Fig. 7)
•	 Nd [57.29 and 84.67] ppm (see Fig. 9)
•	 La [73.97 and 108.33] ppm (see Fig. 8)
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Fig. 4  CB forecast chart: La after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 13.13 to 19.46 ppm. (Source: own work)
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Fig. 5  CB forecast chart: Nd after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 12.24 to 18.06 ppm. (Source: own work)
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6  �Conclusions

This study provides new insight into the practical implementation of MC method, 
based on the stochastic approach, and applied to the uncertainty of the LCI data col-
lection process. To our knowledge, there is a lack of publications and research pre-
sentation of stochastic modelling of the data used for the LCI, for beneficiation of 
REEs, in the flotation tailings processes. Probabilistic techniques using MC simula-
tions must consider the strategy based on the specification of the optimal distribu-
tion. The MC simulation in this study provides justification for the lognormal 
distributions assumed for the analysed parameters. Thanks to uncertainty analysis, 
a final result is obtained in the form of value range. As a result, the results of this 
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Fig. 6  CB forecast chart: W after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 1556.96 to 2302.73 ppm. (Source: own work)

Table 1  Statistics report of outcomes from the simulation

Statistic Ce (ppm) La (ppm) Ne (ppm) W (ppm)

Trials 10,000 10,000 10,000 10,000
Mean 31.98 16.01 14.98 1898.60
Median 31.80 15.93 14.91 1887.51
Mode – – – –
Standard deviation 3.19 1.60 1.49 191.02
Variance 10.19 2.56 2.22 36487.08
Skewness 0.27 0.33 0.25 0.31
Kurtosis 3.05 3.23 3.02 3.13
Coeff. Of variability 0.10 0.10 0.10 0.10
Range maximum 36.46 21.10 19.47 1904.42
Range minimum 20.36 10.26 9.66 1284.84
Range width 47.24 23.51 20.81 2692.45
Mean std. error 0.03 0.02 0.01 1.91

Source: own work
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study, based on the real data and obtained using MC simulation, are more reliable 
than those based on the deterministic approach. An additional advantage is associ-
ated with the fact that no normality is presumed.

Finally, it is concluded that uncertainty analysis offers a well-defined procedure 
for LCI studies, early phase of LCA, and provides the basis for defining the data 
needs for full LCA of the beneficiation of REE process. It must be pointed out that 
MC simulation needs to know the probability distribution for the purpose of an 
uncertainty analysis in contrast to bootstrap sampling, which creates an uncertainty 
analysis without knowing the probability distribution of the analysed data.

Stochastic approach used to LCI supports decision-makers in the interpretation 
of final LCA results and leads to better understanding of many analytical approaches. 
The results of this study will encourage other researchers to consider this approach 
in their projects. Results can improve current procedures, and they can help the 

Table 2  Percentiles report of outcomes from the simulation

Percentile Ce (ppm) La (ppm) Ne (ppm) W (ppm)

0% 20.36 10.26 9.66 1284.84
10% 28.04 14.03 13.13 1659.92
20% 29.26 14.65 13.71 1736.95
30% 30.17 15.13 14.14 1793.51
40% 31.01 15.53 14.56 1841.49
50% 31.80 15.93 14.91 1887.51
60% 32.62 16.33 15.29 1938.46
70% 33.61 16.78 15.71 1900.61
80% 32.94 16.95 15.90 1989.04
90% 36.19 18.11 16.92 2147.66
100% 47.24 23.51 20.81 2692.45

Source: own work
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Fig. 7  CB forecast chart: Ce after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 138.93 to 207.00 ppm. (Source: own work)
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LCA practitioners and decision-makers in the REEs beneficiation processes model-
ling and management. They can also contribute to better understanding of many 
analytical procedures and bring closer to industrial application – industrially rele-
vant focus – and may also stimulate innovation in the stochastic studies.

Summarizing, consideration of uncertainty in LCA will make the LCA field 
more robust and credible in supporting the practitioner decisions, as discussed in the 
work of Igos et al. [10].

Frequency Chart

Certainty is 95.00% from 57.29 to 84.67 ppm

Mean = 70.01
0.000

0.004

0.008

0.012

0.016

0

39.5

79

118.5

158

51.86 60.93 70.01 79.09 88.16

10 000 Trials    9 900 Displayed

Forecast: Ne
Pr

ob
ab

ili
ty

Frequency

Fig. 8  CB forecast chart: Ne after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 57.29 to 84.67 ppm. (Source: own work)
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Fig. 9  CB forecast chart: La after 10,000 trials (95% confidence interval). Certainty is 95.00% 
from 73.97 to 108.33 ppm. (Source: own work)
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Table 3  Statistics report of outcomes from the simulation

Statistic Ce (ppm) La (ppm) Ne (ppm)

Trials 10,000 10,000 10,000
Mean 170.19 89.96 70.01
Median 169.42 89.44 69.67
Mode ……. ……. …….
Standard deviation 17.23 8.82 6.98
Variance 296.77 77.77 48.75
Skewness 0.30 0.28 0.29
Kurtosis 3.18 3.10 3.16
Coeff. of variability 0.10 0.10 0.10
Range maximum 245.86 131.45 103.56
Range minimum 113.19 62.87 43.33
Range width 132.67 68.58 60.23
Mean std. error 0.17 0.09 0.07

Source: own work

Table 4  Percentiles report of outcomes from the simulation

Percentile Ce (ppm) La (ppm) Ne (ppm)

0% 113.19 62.87 43.33
10% 148.78 79.10 61.20
20% 155.45 82.45 64.07
30% 160.49 85.00 66.17
40% 165.08 87.28 67.95
50% 169.42 89.44 69.67
60% 173.82 91.70 71.40
70% 178.62 94.38 73.44
80% 184.30 97.25 75.81
90% 192.43 101.51 79.09
100% 245.86 131.45 103.56

Source: own work
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