Skip to main content

On the Resilience of Internet Infrastructures in Pacific Northwest to Earthquakes

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12671))

Included in the following conference series:

Abstract

The U.S. Pacific Northwest (PNW) is one of the largest Internet infrastructure hubs for several cloud and content providers, research networks, colocation facilities, and submarine cable deployments. Yet, this region is within the Cascadia Subduction Zone and currently lacks a quantitative understanding of the resilience of the Internet infrastructure due to seismic forces. The main goal of this work is to assess the resilience of critical Internet infrastructure in the PNW to shaking from earthquakes. To this end, we have developed a framework called ShakeNet to understand the levels of risk that earthquake-induced shaking poses to wired and wireless infrastructures in the PNW. We take a probabilistic approach to categorize the infrastructures into risk groups based on historical and predictive peak ground acceleration (PGA) data and estimate the extent of shaking-induced damages to Internet infrastructures. Our assessments show the following in the next 50 years: \(\sim \)65% of the fiber links and cell towers are susceptible to a very strong to a violent earthquake; the infrastructures in Seattle-Tacoma-Bellevue and Portland-Vancouver-Hillsboro metropolitan areas have a 10% chance to incur a very strong to a severe earthquake. To mitigate the damages, we have designed a route planner capability in ShakeNet. Using this capability, we show that a dramatic reduction of PGA is possible with a moderate increase in latencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Given, D.D., et al.: Revised technical implementation plan for the shakealert system-an earthquake early warning system for the west coast of the united states. Technical report, US Geological Survey (2018)

    Google Scholar 

  2. Liu, S., Bischof, Z., Madan, I., Chan, P., Bustamante, F.: Out of sight, not out of mind - a user-view on the criticality of the submarine cable network. In: ACM IMC (2020)

    Google Scholar 

  3. Kumaran Mani, S., Hall, M., Durairajan, R., Barford, P.: Characteristics of metro fiber deployments in the us. In: 2020 Network Traffic Measurement and Analysis Conference (TMA). IEEE (2020)

    Google Scholar 

  4. Durairajan, R., Barford, C., Barford, P.: Lights out: climate change risk to internet infrastructure. In: Proceedings of Applied Networking Research Workshop (2018)

    Google Scholar 

  5. Durairajan, R., Barford, P., Sommers, J., Willinger, W.: InterTubes: a study of the US long-haul fiber-optic infrastructure. In: Proceedings of ACM SIGCOMM (2015)

    Google Scholar 

  6. Giovinazzi, S., et al.: Resilience and fragility of the telecommunication network to seismic events. Bull. N. Z. Soc. Earthq. Eng. 50(2), 318–328 (2017)

    Google Scholar 

  7. Fukuda, K., et al.: Impact of tohoku earthquake on R&E network in Japan. In: Proceedings of the Special Workshop on Internet and Disasters, pp. 1–6 (2011)

    Google Scholar 

  8. The Kobe Earthquake: Telecommunications Survives at Kobe University. https://thejournal.com/Articles/1996/03/01/The-Kobe-Earthquake-Telecommunications-Survives-at-Kobe-University.aspx

  9. Leelardcharoen, K.: Interdependent response of telecommunication and electric power systems to seismic hazard. Ph.D. dissertation, Georgia Institute of Technology (2011)

    Google Scholar 

  10. Esposito, S., Botta, A., De Falco, M., Iervolino, I., Pescape, A., Santo, A.: Seismic risk analysis of data communication networks: a feasibility study. In: 16th European Conference on Earthquake Engineering (2018)

    Google Scholar 

  11. Schulman, A., Spring, N.: Pingin’ in the rain. In: ACM IMC, November 2011

    Google Scholar 

  12. Eriksson, B., Durairajan, R., Barford, P.: RiskRoute: a framework for mitigating network outage threats. In: ACM CoNEXT (2013)

    Google Scholar 

  13. Padmanabhan, R., Schulman, A., Levin, D., Spring, N.: Residential links under the weather. In: Proceedings of the ACM Special Interest Group on Data Communication, pp. 145–158 (2019)

    Google Scholar 

  14. ESRI ArcGIS. http://www.arcgis.com/features/

  15. Baker, J.W.: An introduction to probabilistic seismic hazard analysis (PSHA). White paper, version, vol. 1, p. 72 (2008)

    Google Scholar 

  16. McGuire, R.K.: Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull. Seismol. Soc. Am. 85(5), 1275–1284 (1995)

    Google Scholar 

  17. Modified Mercalli Intensity Scale. https://www.usgs.gov/media/images/modified-mercalli-intensity-scale

  18. Joyner, W.B., Boore, D.M.: Prediction of earthquake response spectra. US Geological Survey Open-file report (1982)

    Google Scholar 

  19. Wang, Z.: Understanding seismic hazard and risk: a gap between engineers and seismologists. In: The 14th World Conference on Earthquake Engineering (2008)

    Google Scholar 

  20. Wang, K., Tréhu, A.M.: Invited review paper: some outstanding issues in the study of great megathrust earthquakes-the cascadia example. J. Geodyn. 98, 1–18 (2016)

    Article  Google Scholar 

  21. Preston, L.A., Creager, K.C., Crosson, R.S., Brocher, T.M., Trehu, A.M.: Intraslab earthquakes: dehydration of the cascadia slab. Science 302(5648), 1197–1200 (2003)

    Article  Google Scholar 

  22. Wells, R.E., Blakely, R.J., Wech, A.G., McCrory, P.A., Michael, A.: Cascadia subduction tremor muted by crustal faults. Geology 45(6), 515–518 (2017)

    Article  Google Scholar 

  23. Willinger, W., Doyle, J.: Robustness and the internet: design and evolution. In: Robust-Design: A Repertoire of Biological, Ecological, and Engineering Case Studies (2002)

    Google Scholar 

  24. Doyle, J.C., et al.: The “robust yet fragile” nature of the internet. In: Proceedings of the National Academy of Sciences (2005)

    Google Scholar 

  25. Gorman, S.P., Schintler, L., Kulkarni, R., Stough, R.: The revenge of distance: vulnerability analysis of critical information infrastructure. J. Conting. Crisis Manag. 12(2), 48–63 (2004)

    Article  Google Scholar 

  26. Gorman, S.: Networks, Security And Complexity: The Role of Public Policy in Critical Infrastructure Protection. Edward Elgar (2005)

    Google Scholar 

  27. Zhou, L.: Vulnerability analysis of the physical part of the internet. Int. J. Crit. Infrastruct. 6(4), 402–420 (2010)

    Article  Google Scholar 

  28. Heegaard, P.E., Trivedi, K.S.: Network survivability modeling. Comput. Netw. 53(8), 1215–1234 (2009)

    Article  Google Scholar 

  29. Ho, P.-H., Tapolcai, J., Mouftah, H.: On achieving optimal survivable routing for shared protection in survivable next-generation internet. IEEE Trans. Reliab. 53(2), 216–225 (2004)

    Article  Google Scholar 

  30. Wu, J., Zhang, Y., Mao, Z.M., Shin, K.G.: Internet routing resilience to failures: analysis and implications. In: ACM CoNEXT Conference (2007)

    Google Scholar 

  31. Agarwal, P., Efrat, A., Ganjugunte, S., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. In: IEEE INFOCOM (2011)

    Google Scholar 

  32. Eriksson, B., Durairajan, R., Barford, P.: RiskRoute: a framework for mitigating network outage threats. In: ACM CoNEXT, December 2013

    Google Scholar 

  33. Bush, R., Maennel, O., Roughan, M., Uhlig, S.: Internet optometry: assessing the broken glasses in internet reachability. In: ACM IMC (2009)

    Google Scholar 

  34. Katz-Bassett, E., Madhyastha, H.V., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T.: Studying black holes in the internet with hubble. In: USENIX NSDI (2008)

    Google Scholar 

  35. Kant, K., Deccio, C.: Security and Robustness in the Internet Infrastructure (2012)

    Google Scholar 

  36. Katz-Bassett, E., et al.: LIFEGUARD: practical repair of persistent route failures. In: ACM SIGCOMM (2012)

    Google Scholar 

  37. Quan, L., Heidemann, J., Pradkin, Y.: Detecting internet outages with precise active probing (extended). USC Technical report (2012)

    Google Scholar 

  38. Glatz, E., Dimitropoulos, X.: Classifying internet one-way traffic. In: ACM IMC (2012)

    Google Scholar 

  39. Wang, H., Yang, Y.R., Liu, P.H., Wang, J., Gerber, A., Greenberg, A.: Reliability as an interdomain service. In: ACM SIGCOMM (2007)

    Google Scholar 

  40. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: ACM SOSP (2001)

    Google Scholar 

  41. Zhu, Y., Bavier, A., Feamster, N., Rangarajan, S., Rexford, J.: UFO: a resilient layered routing architecture. In: SIGCOMM CCR (2008)

    Google Scholar 

  42. Hansen, A.F., Kvalbein, A., Čičić, T., Gjessing, S.: Resilient routing layers for network disaster planning. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3421, pp. 1097–1105. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31957-3_125

    Chapter  Google Scholar 

  43. Gummadi, P.K., Madhyastha, H.V., Gribble, S.D., Levy, H.M., Wetherall, D.: Improving the reliability of internet paths with one-hop source routing. In: USENIX OSDI (2004)

    Google Scholar 

  44. Eriksson, B., Durairajan, R., Barford, P.: Riskroute: a framework for mitigating network outage threats. In: Proceedings of ACM CoNEXT (2013)

    Google Scholar 

  45. Madory, D.: Hurricane Sandy: Global Impacts | Dyn Blog. http://www.renesys.com/blog/2012/11/sandys-global-impacts.shtml

  46. Cowie, J., Popescu, A., Underwood, T.: Impact of hurricane katrina on internet infrastructure. Report, Renesys (2005)

    Google Scholar 

  47. Anderson, S., Barford, C., Barford, P.: Five alarms: assessing the vulnerability of cellular communication infrastructure to wildfires. In: ACM IMC (2020)

    Google Scholar 

  48. Kaikoura quake produced strongest ground shaking in NZ, new research shows. https://www.gns.cri.nz/Home/News-and-Events/Media-Releases-and-News/strongest-ground-shaking-in-NZ

  49. 2011 great tohoku earthquake, Japan. https://earthquake.usgs.gov/earthquakes/eventpage/official20110311054624120_30/executive

  50. Evidence for Submarine cables terminating at nearby colocation facilities. http://cryptome.org/eyeball/cablew/cablew-eyeball.htm

  51. Durairajan, R., Ghosh, S., Tang, X., Barford, P., Eriksson, B.: Internet atlas: a geographic database of the internet. In: ACM HotPlanet (2013)

    Google Scholar 

  52. OpenCelliD - The world’s largest Open Database of Cell Towers. https://www.opencellid.org/

  53. Petersen, M.D., et al.: The 2014 united states national seismic hazard model. Earthquake Spectra 31(S1), S1–S30 (2015)

    Article  Google Scholar 

  54. ArcGIS Contour (3D Analyst). https://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm

  55. Arcgis intersect (analysis). https://pro.arcgis.com/en/pro-app/tool-reference/analysis/intersect.htm

  56. Arcgis summarize within (analysis). https://pro.arcgis.com/en/pro-app/tool-reference/analysis/summarize-within.htm

  57. Arcpy. https://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm

  58. Quake shakes up the net, December 2006. http://www.thestar.com.my/story/?file=%2f2006%2f12%2f28%2fnation%2f16426778&sec=nation

  59. Lindsey, N.J., et al.: Fiber-Optic Network Observations of Earthquake Wavefields. Geophys. Res. Lett. 44(23), 11792–11799 (2017)

    Article  Google Scholar 

  60. USA Core Based Statistical Area. https://hub.arcgis.com/datasets/4d29eb6f07e94b669c0b90c2aa267100_0

  61. Durairajan, R., Barford, P.: A techno-economic approach for broadband deployment in underserved areas. In: Proceedings of ACM SIGCOMM CCR (2017)

    Google Scholar 

  62. NOAA Tsunami Forecasting System (SIFT). https://nctr.pmel.noaa.gov/Pdf/SIFT_3_2_2_Overview.pdf

  63. NOAA Tsunami Forecasting. https://nctr.pmel.noaa.gov/tsunami-forecast.html

  64. Nowicki, M.A., Wald, D.J., Hamburger, M.W., Hearne, M., Thompson, E.M.: Development of a globally applicable model for near real-time prediction of seismically induced landslides. Eng. Geol. 173, 54–65 (2014)

    Article  Google Scholar 

  65. Allstadt, K.E., et al.: Usgs approach to real-time estimation of earthquake-triggered ground failure-results of 2015 workshop. Technical report, US Geological Survey (2016)

    Google Scholar 

  66. Naeim, F., Bhatia, H., Lobo, R.M.: Performance based seismic engineering. In: Naeim, F. (ed.) The Seismic Design Handbook, pp. 757–792. Springer, Boston (2001). https://doi.org/10.1007/978-1-4615-1693-4_15

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers and our shepherd, Zachary Bischof, for their insightful feedback. This work is supported by NSF CNS 1850297 award and Ripple faculty fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NSF or Ripple.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Durairajan .

Editor information

Editors and Affiliations

A Appendices

A Appendices

1.1 A.1 Contour of Expected PGA Values

We use two sets of probabilistic PGA data which encompass the CSZ: expected PGA in the next 50 years at 10% (Fig. 5) and 2% (Fig. 6) for the PNW area. These data sets were computed using the USGS national seismic hazard map software for the 2014 map edition [53], obtained as raster information and converted to concentric polygons using raster contouring capabilities [54] in ArcGIS.

Fig. 5.
figure 5

Expected PGA with 10% chance in next 50 years.

Fig. 6.
figure 6

Expected PGA with 2% chance in next 50 years.

1.2 A.2 Miles of Fiber Affected Per Provider

Figures 7 and 8 show the fiber miles for individual providers for PGA values with 2% and 10% probability of exceedance within the next 50 years, respectively. From these figures, we see that Spectrum Business is at the highest risk as it has fiber assets in all higher PGA value bins, followed by Zayo and Integra.

Fig. 7.
figure 7

Miles of fiber affected for expected PGA with 2% probability.

Fig. 8.
figure 8

Miles of fiber affected for expected PGA with 10% probability.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayer, J., Sahakian, V., Hooft, E., Toomey, D., Durairajan, R. (2021). On the Resilience of Internet Infrastructures in Pacific Northwest to Earthquakes. In: Hohlfeld, O., Lutu, A., Levin, D. (eds) Passive and Active Measurement. PAM 2021. Lecture Notes in Computer Science(), vol 12671. Springer, Cham. https://doi.org/10.1007/978-3-030-72582-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72582-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72581-5

  • Online ISBN: 978-3-030-72582-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics