Skip to main content

Stability Condition of a Multi-class Modified Erlang System

  • Conference paper
  • First Online:
Information Technologies and Mathematical Modelling. Queueing Theory and Applications (ITMM 2020)

Abstract

We consider a modified Erlang loss system where the first priority customers (class-1) are lost if find all servers busy, while the second priority customers (class-2) form an infinite capacity queue. A new feature of this system is that sub-classes of class-1 customers are assigned on servers according to assignment probabilities. All customers follow Poisson inputs and have general class-dependent service time. We show how the product form of class-1 stationary probabilities can be used to obtain the stability condition of the whole system even when sub-classes of class-1 customers have different service rates. Also we perform discrete event simulation to confirm theoretical results.

The research is supported by Russian Foundation for Basic Research, projects 18-07-00147, 18-07-00156 and 19-07-00303.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morozov, E., Rogozin, S., Nguyen, H.Q., Phung-Duc, T.: Modified Erlang loss system for cognitive wireless networks. J. Math. Sci. (2020, submitted)

    Google Scholar 

  2. Rogozin, S.: Simulation a modified Erlang loss system with multi-type servers and multi-type customers. In: Proceedings of the Second International Workshop on Stochastic Modeling and Applied Research of Technology (2020, submitted)

    Google Scholar 

  3. Adan, I., Hurkens, C., Weiss, G.: A reversible Erlang loss system with multitype customers and multitype servers. Probab. Eng. Inf. Sci. 24(4), 535–548 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ostovar, A., Keshavarz, H., Quan, Z.: Cognitive radio networks for green wireless communications: an overview. Telecommun. Syst. 76, 129–138 (2020). https://doi.org/10.1007/s11235-020-00703-8

    Article  Google Scholar 

  5. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  6. Morozov, E., Delgado, R.: Stability analysis of regenerative queues. Autom. Remote Control 70, 1977–1991 (2009). https://doi.org/10.1134/S0005117909120066

    Article  MathSciNet  MATH  Google Scholar 

  7. Akutsu, K., Phung-Duc, T.: Analysis of retrial queues for cognitive wireless networks with sensing time of secondary users. In: Phung-Duc, T., Kasahara, S., Wittevrongel, S. (eds.) QTNA 2019. LNCS, vol. 11688, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27181-7_6

    Chapter  Google Scholar 

  8. Down, D.G., Lewis, M.E.: Dynamic load balancing in parallel queueing systems: stability and optimal control. Eur. J. Oper. Res. 168, 509–519 (2006)

    Article  MathSciNet  Google Scholar 

  9. Tsai, Y.C., Argon, N.T.: Dynamic server assignment policies for assembly-type queues with flexible servers. Naval Res. Logist. 55(3), 234–251 (2008)

    Article  MathSciNet  Google Scholar 

  10. Tekin, E., Hopp, W.J., Van Oyen, M.P.: Pooling strategies for call center agent cross-training. IIE Trans. 41(6), 546–561 (2009)

    Article  Google Scholar 

  11. Ahghari, M., Balcioglu, B.: Benefits of cross-training in a skill-based routing contact center with priority queues and impatient customers. IIE Trans. 41, 524–536 (2009)

    Article  Google Scholar 

  12. Agnihothri, S.R., Mishra, A.K., Simmons, D.E.: Workforce cross-training decisions in field service systems with two job types. J. Oper. Res. Soc. 54(4), 410–418 (2003)

    Article  Google Scholar 

  13. Ahn, H.-S., Duenyas, I., Zhang, Q.R.: Optimal control of a flexible server. Adv. Appl. Probab. 36, 139–170 (2004)

    Article  MathSciNet  Google Scholar 

  14. Stolyar, A.L., Tezcan, T.: Control of systems with flexible multi-server pools: a shadow routing approach. Queueing Syst. 66, 1–51 (2010). https://doi.org/10.1007/s11134-010-9183-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rogozin, S., Morozov, E. (2021). Stability Condition of a Multi-class Modified Erlang System. In: Dudin, A., Nazarov, A., Moiseev, A. (eds) Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2020. Communications in Computer and Information Science, vol 1391. Springer, Cham. https://doi.org/10.1007/978-3-030-72247-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72247-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72246-3

  • Online ISBN: 978-3-030-72247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics